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_:i PREFACE

_il. The baseline geodetic algorithms presented in this document were compiled to
!_;.: provide a standard for accuracy measurement and for isolation of errors in
r" radar and Optical tracking devices. In implementing the algorithms, the first

emphasis_was placed on accuracy and the second on speed. In all cases, the
_i' programs yield acc_racies that are at least two orders._f magnitude better than

l the LSB-values associated with existing radar tracking equipment. Most of-the il

algorithms employ mathematical techniques well known in the field ofgeodetics .....

1

However, in certain cases, special high-accuracy algorithms, i,-eviously
developed by GMD Systems, were used because.the normal solution techniques were
unable to achieve the results desired. For example, the refraction correction
method provided in Chapter 6 uses a G_iD-developed algorithm in which the
refraction gradient is.'used to compute the amount of bending which occurs in
each incremental projection of a wave front traveling through a refracting
medium. The program operates• on a desktop (12-dlgl£),computer end, in a couple
of hundred iterations, yields results that are almost identical .-to those-
obtained from the 3SC double-precision (29-digit) Cyber P_9$ram, which requires
up to _,000 iterations for low-altitude solutions.

Another GMDalgorithm was used to obtain a faster closed-form method for
converting off-spheroid Universal Space Rectangular coordinates to g_.odetic
latitude, longitude, and altitude. This solution method is provided in chapter
5 (GMD Closed-Form Solution)., and it is usable with any spheroid datum
reference. It is not quite as fast as the two approximation methods with which _
it is compared, but it is faster than the other closed-form solution described
in chapter 5..

Since the baseline prog._ams will be used as.a measurement standard to. which
data from operational systems w£11 be compared, it was. imperative that, the
baseline programs have provable accuracy. For this reason, considerable_time

was spent in developing validation techniques, that could demonstrate the
accuracies of the algorithms to. anyone who might feel skeptical about the
results. Three methods are considered valid, for this purpose. The first
selects, special tr:_vial cases where standard trigonometric relations can be
applied to get comparison val.ues, Since. the program exercises the same
algorithms, for trivial as for more_complex non-trivial solutions, this is
considered to be a sound validation technique if correctly planned. The second
validation method compares results of the baseline programs.with data published
by USCOS, D_iAC, and Other mapping and geodetic groups whose work is generally
held as a standard for survey and geodetic measurement purposes.. The third
method compares results obtained using one mathematical apFroach to results
obtained by other different.so.lution methods, If two different solution

techniques yield the same results, then this is accepted as an add_itional .........
ConfidenCe factor.

Radar device (pedestal and antenna) Corrections were eliminated from this
document since they_ were covered in an earlier public, ation._

Robert 3ames
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il CHAPTER 1

', MAPPING

)!,
i'

p_ The mapping routines provided in the G_fl) baseline ge_odetic programs consist of
/

i_i two subprograms,, each with several operating modes, The.subprograms and .operating modes are:

I_ A. Geodeti_-Lembert Subprogram

1, Geodetic ta Lambert conversion mode (general)

i 2.. Lambert to geodetic conversion.mode .(general)3., Geodetic to Lambert conversion mode (California zones).
4.. Lambert to geodetic conversion mode .(California zones)

B. Geode.tic-Transverse Marco tor_Subpr ogram

1.. Geodetic• to transverse .Mercator conversion mode. _$eneral)
2. Transverse Mercator to geodetic .convexsion mode (general)
3.. Geodetic to transverse Mere&tot.conversion mode (Nevada zones).

4, Transverse Mercator to geodetic conversion mode (_vada zones) .

This chapter presents the-general mapping equations and. concepts which are
common to the Lambert and Mercator transformations and therefore applicable to
both subprograms. The mathematical routines unique to the Lambert

transformations are presented in chapter._ and those for the Mercator _

transformation are given.in chapter• 3. i

The mathematical treatments presented in this document are thought to be_
suff.iciently oomple.te to enable a user to grasp the basic fundamentals of. the

i various transformation equations needed to prepare or modify mapping or
geodetic programs employing Lambert conformal and transver_se Mercator confo_cmal
mathematics. However, should supplemental information be needed, detailed
derivations, for both the Lambert and.transverse:Mercator transformations can be

found in reference 1, and supporting data are provided in refers2 and 3 ................

General Mapping Theory

Types of Mapping Projections

Many types of projections are used in the s_ience of mapping. These include
spherical, conical, and cylindrical mapplng,_ On a point'to-polnt basls, of the.

Coordinates of the earth spheroid Onto a new surface seleCted.t0 meet a certain _

mapping application. P, abably the simplest projection is the perspective or _
geOmetriC type, in which images are mapped• at. the exact point on the new
surface •where a ray drawn from_ the projecting origin through.a, spheroid point• _ i

_, intersects the mapping Surface.. Unfortunately, perspective prOjections
introduce too much distortion to be practical in most mapping applications.

!
1-1

!
J



t

i,' A second type consists of a general croup of nonperspective projections which.
are not projected in the usual sense of the term, but are mathematically

1 m0dificd sO. as to suit one or more particular requirements. Although
!_ distortion is always present in a planar representation of a spheroidal
i, surface by mathematically, forcing certain _onditions to h0 met, nonperspect_ve
• projections can b+e readily+adapted to individual mapping needs, and they are

therefore more useful than perspective projections. Thus, in many cases, it i_ "i

_i_ possible to derive transformation equations such that areas transform ]

ii _ accurately from those on the spheroid surface to those on the mapped surface.
In other cases, it is possible to insure that the scale at any given point ove_ _
the. entire mapping prnjection is the same in all directions, even though the
scale varies from one part Of the projection to another. This type of

' proj¢ct£on preserves an&los and ia._said to be orthomorphie or conformal.

In navigational applications, the lrrimary concern is that heading angles
measured on the map be the same as those that would be. measured on the earth
spheroid. Hence, navigational charts nearly al.ways employ one of the various
types of orthomorphic projections_most commonly the Lambert conformal
projection or the transverse Mercator conformal_prOject!on.

Orthogonal Cu_vilinear Coordinate Systems

A planar curvilinear coordinate system is said t_ exist when two.single
parameter families.of curves can be defined such that any single point in the_
region under consideration lies on one and only one curve in each of the two
families of. curves. For example, nearly any point on the earth spheroid can be
fully defined by:the intersection of unique latitude (parallel) and longitude
(meridian) arcs. For this system to alsa be orthogonal, all of the infinite
number of possible intersections between the two families of curves must occur
at right angles to one another. Obviously, this condition is true on the earth
spheroid, and, if angles are to be preservedj, it must also .he true on.the two-
dimensional mapp_g surface. --

It was noted that the earthes parallels and meridians form a curvilinear
coordinate system at nearly every poin. on the .earth, but not all points.
Obviously, at the two poles, the condition for uniqueness is not met by the
meridians since all meridians pass through the same point, causing the azimuth
measure to become indete_minate.

Conformai Isometric Projection of One Surface .Onto Another --

A transformation is said to be orthomorphic if the form of .incremental par.ts of
a figure retain the same shape through the transformation. However, the shape
Of large parts can and will change. A surface has an orthomorphic represen-
tation On another if a _ne_tO-one Correspondence can be established between
points in such a manner that angles between corresponding lines on the two
surfaces are_equal

_igur¢ 1.1 represents a plane on which the set Of Curvilinear 0rth0gonal

1--2



_oordlnates Are defined as • and _. On this plane the Ionstrh of a

differential arc segment is given by the .relation

,._ ds a = d_ a +.d_ a. (I.I)

If there exists another surface on which a differential arc could be

,_ represented.by the samer.CUrvtlinear coordinates and a magnification term k in

:ii,t the f orm ids I = k_(d_ z _.d_ 2) .. (1.2) iIi

then it is obviously possible tO achieve a one-to-one relationship between the
points on the two surfaces.

dX

-X

_igure 1.1.

It is important to note that for the orthomorphic property to exist, it is not
necessary that k be the same value at all points over the surface, and it will
not be the same.in the derivations which follow. However, since at any given
point the value of k magnifies both of the coordinates equally, then it is
obvious that the angle between the differential segment ds and the two
coordinate elements d_ and d_ will be the same on the initial and

transformed surfaces, thus preserving the shape of small (incremental) forms.
through the transformation. Satisfaction of equations (1.1) and (1.2) also
insures that the coordinate axes____an_re 0rthosonal at all points on
both surface_s ....

If a relationship between two surfaces could be established such that equations
(1.1) and (1.2) were satisfied, then segment angles and incremental shapes
would be preserved. A final requirement of the transformation is that the
transformation functions be analytic throushout the region to be mapped. A
function is said to be analytic if it is Continuously differcntiable throushout
the region of interest (that is, allhigher order derivatives exist). The
analytic nature of a function can be shown by application of the Cauchy-Riemann
equations, which are derived later in this chapter. _ 1
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The GOOmetry of th_ Spheroid.

'f,

i:_ The fOllowing standard spheroidal r©lationships are necessary for do_iVati0n of

_, tr.ans,f0rmation equations, .Thoy__re well known and presented without proof,

i A. The Spheroid: The .equatiOn Of the spheroid in Cart0sian. form is given
below, The symbol a represents the length Of the semimajor axis of the

' spheroid, and the symbol b r_pr0sents the 1,ngth of the semiminor axis of
_ th_ spheroid.

xa/a_..+y2"/a__.+z2/b 2 = 1 (1.3)_

B. EccentriCity, s: Eccentricity,. a-rela.tionship between the semimaj0r
and semiminor._axes of an ellipse, is given by

e 2 = (a S + b_)laE. (1.4)

C. _teridional Radius of Curvature, R:. The north-south (N-S)radius Of cure- -

a ture at any point on the spheroid is the distance measured along the
norm&l .line from the surface of the.. spheroid to the point which is the
center Of curvature of the spheroid meridian. I.t is given by the equation

R = a_(l"- _)L.,(I - s2sln_p) s12 (I.5)

where._ is the geodeti¢ latitude of the poltlt.

D. East-West Radius of Curvature, N: The east'west (E-W) radius of curvature

at any point on the. spheroid is the distance measured along the normal line
from the-surface of the spheroid to the semiminor axis.. It is obtained
from the equation

N.=--a/(1 "- easinip)t/a.. (L6).

E. 5feridional Arc, $_t: The true....length of the meridional arc from the equator
to latitude. _ is given by

Sp__ o R dg. (1.7) 1

F. GeOdetic-latitude, _t: Geodetic latitude of a point P located_on the 4
spheroid surface is defined as the angle between_th_e_£pher0id normal line

at P and the spheroid equ_ator. ]

G. Geocentric latitude, _: Geocentric latitude of a point P lOcated on
the -spheroid surface, is defined as the angle between the spheroid .equator
and the line from the spheroid Origin and through the point P.

H,_ Geodetic to Geocentric Latitude Conversion: The conversion from geodetic
latitude, _, to geoeentri_-latitude, _t is given .by



/-Spheroid
surface

Figure 1.2.

$Ubstitutin 8 the values fo_ R and N Six_.n in eqnations (1.5) and (1.6),

equation (1.10) becomes

a_cos*/& [i_ (I_-_2)2 du2 d_2]" (i 1_)

(
Now if d_ is defined as

d_ =- (i "-_,a)d_ (1.12)



,q
and k 2 as

: d2s_a__h_comes

i': ds _ ._ _(d_ + d_), (1.14)•

_ which is identical to equation (1.2).

Inoremental Sphe_ical Segment

i If a derivation similar to that shown in .the pr.eceding section is followed fora sphere.where one wishes to Obtain isometric parameters _ and k such that an
incremental element _f arc length maps ¢onformally onto another surface, it has
been shown that the incremental element of. length must-be of the form

ds z = k_(d_ _ d_). (1.15)

F_r a sphere, if we let the conformal latitude, be given by _, the longitude by

A, and the radlus.by p, then the length of the incremental segment, as

shown by figure 1.3, is

ds_ e p_d_,+ p_oos2_ d_Z .........................................(1.16)

= p2cos2 _ [d.._. , dkS] (1.17)Lcos=_

which is in the form of equation (1.15).



If the substitutions

d_ _ d_/cos _ .and k _- p cos J_ (1.18) ..................

_,_ are made in equation (1.17), the equation for incremental arc lenBth on the
sphere becomes identical to ©quation (1.15),

_,' ds! = k_ (d_* + d_.2) • (i.29)

"I![_ Solving the differential equation (1.18) for_ ylelds

r
_' _d..___._ (1.20)
j. cos

which On integration yields

•
Thus, the latitude and longitude coordinates on a sphere (_, X) can be.
conformally mapped onto _I_lane in terms of • and _in the same manner as
sho_n for the spheroid.

Conformal Mapping of a S_herold Onto a Sphere ..

The sphere whose linear element is given by equation (1.19) is called the
eonformal sphere since equation (1.19) insures that the mapping of the points
of the sphene onto a plane will be_orthomorphic. In addition, if the
incremental arc of anyone surface can be shown to map onto any other surface
while preserving the relations ......

ds_ = k_(d_ 2 + d__) (1.22)

and

ds_ = k_(d! 2 + d_2.), (1.23)

then the mapping between those two surfaces wiI1 also be orthomorphic. It 3as
already been shown that such relations exist for both the spheroid and the
sphere (eqs. (1.10)and (1.17)).. Thus it is possible toequate relations for
d_ 2 from the sphere and the spheroid to yield

d_ = _ _R_d_2 (1.24) ..
......cos_. = Nlcosl_,

which makes the differential equation to be solved for tha transformation

= R d_ (.t..2_)
cos-_. N cos _'

The solution t_ this equation is 9aSily obtained from the separate solutions

1-7
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" T'_r_m_'= _T _.... ........ _ , _ , ._ "-__7_ _".......... _V_'_ "_7_ T"_"...... __ ......... T ...... r'_-i _._.............. _...... T__

.[

!_" already found for the spheroid and spho!iCal aases,
!,

Thus, in Order to conformally map coordinates between the sph©roid and a
e0nformal sphere, it_ is necessary tO convert geodotlc latltud0_ _, into the

_! spherical conformal latitude, _, by means of equation (1,25).. Since 10nsltude -is the same in equations (1,10) and (I.17__), it .follows that

I! _ ___ + _. (1.27)

i Magnification for the transformat.io n is 8iven by

I ds_ p cos _ (1.28)ds a N cos p .....

IsOmetric ,Latitude Computation

ISometric latitude, _, was defined on the spheroid by equation (1.12)..

Rearr_nsing terms, equation (1.11) can be rewritten aS

d_ = _ sZcos _,.dp (1.29)
cos _t-'1 -_ s2sin2p '

from which

• =.j"d_____ ._- e2.cos _ d_ (1.30)cos _ 1 - s2Sin_2_" ___
|

Integrationof equatiOn (1.30) yields t

• (I + s sin p)

or, in its more common form,

[ i - _ sln _le/z], (1.32)_ = In tan (_ + _1 (I + 8 sin _/

COnformal _[appln8_of a Spheroid Onto a_Planc
¢

It has already been shown that for a stur£aCe to be mappe_l con£or_mally onto a

plane_ it Is necessary that a relationshlp Of the type
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be found for tile st_faC0, l_or the spheroid, it has been shown in
c_uatibn (1,10) that the incremental spheroid segment oan bo represented by

_s] = N2 cos_p LN2 . (1.34)
L_

If Thus for the conformal mapping of a sph.eroid Onto a plane, it is necessary that ........e , • "

. 11
dl: =...._ see. p. d}l, k 2 = NZcos_, and _, = .).. (1.3.5)

These equations show important properties of the..Conformal mapping of a
spheroid Onto a plane. Specifically, _ is found to be a function of _ alone,
and X is found to be a function of ). alone.. F_inally; by oombinin8
equations (1.32) and (1.35), the fundamental isometric relations for the
cOnformal mapping Of a spheroid onto a plane can be given as

= _ sec _ dB = In tan r, + i + sasina B ..... ___(1"36)
O_

and

: __ (1.37)

It should _e noted that equations (1.36) and (1.37) are Valid for all conformal

mappings of a spheroid onto a plane. The form of th_ mapplns: (for example,
Lambert conformal, Mercator conformal, or transverse Mercator_ conformal) is
determined by the initial conditionsrused.to der-ive speqifiC transformation
relations.

The C_uehy-Riemann Equations

Because transformation equations employ two independent parameters such as
(x, y) or (_, _) to define a single point, the hsndlin8 of mathematical
Operations can sometimes be simplified through the use of complex variable

theory. For example, in the case_o£ multiplication of (a, b) by (c, d), usin8
simple algebra we have _

(a, b)(C, d) : (ac _ bd, bc + ad)_ (1.38)

By usin& complex numbers, the mathematical relationships Can be simplified.
Using. the term ('1)_ Or i_ equation (1._8_ can be writtenmo_e conveniently as

(a + ib)(e �id)= ac �lad+ ibc + i_bd

--(ac - bd) + i(bc + ad). (1.39)
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,/

! Likewise, the transformation of curvilinear longitudes and is_etri0 latitudes.

_' into rectangular mapping eoordina.tos. (such af_ transverse Moroator coordinates) __

t!, Can be simplified by using complex variable theor_y.

Consider the-set of rectangular coordinates x and y, It has been shown that

curvilinear parameters • and _ will _onformally map fr_ the spheroid onto a
_:_ plane. Thus, if a fun_tion e_ such that -
/i

r, then

dx +_.+_._dy = f'(_. + i_)(d_, + ida). (1.41)

The complex conjugate is .....

dx- idy = f'(_--_i_)(d_ _- ida). (1.42)

ql_lultiplylng equations (1.41) and (1.42).yields

dx2.-+, dy 2 = f'(_. - i_)f'(_. + i_)(d_, a + d_Z)., (1.43)

Also nete that

Ox . _8y _ 0__ iOx
f' ( 7, + i_ ) -= _'-_.,,,.;,....',BX...,.-_,.B,':,,,..-. _ ( 1.44 )

and

f'(X " i_) = _'_ + : - x_--_. (1._451 .....

Equating the real and imaginary_Earts of equation (1.44) or (1.45) yields

8.._x= 03; and Oy =_ O_x (1.46)
07, . B'_ O_. O'¢'

which are the Cauchy-Riemann equations. If the derivatives, exist, and if
equations (1.46)are satisfied at all points in the regiOn,L then the. mapp_ing of.
the two sets of parameters must be eonformal since at any point the rate of
Change of x with respect_ to _, equals the rate of change of y with respect to
_, and th_ rate of Change of x with respeot to _ equals (the negative of)
the. rate of change..af y with respect tO _,_ Thus, at any selected point On
the mapped surface, angles must be preserved in the transformation.

t r
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CHEER 2

LA_ffJF,RT CONFOR_AL TRANSFOI_ATION EQUATIONS

Lambert Theory
h

_ It has already been shown (eq. (1.22))that the oonformal mapping of a spheroid

i! onto a plane is given by :{

fR= _ sec p dg and _ = X. (2.1)

The requirements for a-Lambert conformal conic projection are:

1. The parallels must be arcs of concentric circles with centers:at the
point Of intersection of the meridian radials. '_

2. All meridians must project as radial straight lines _central _
vor_ex point which may lle off the map.

3. All menidians and parallels must intersect_ each other at right angles.

4. All an81.es on the earth's surface must be correctly represented on the
projection.

5. The scale must be true along the two selected standard parallels.

These Conditions establish a conf0rmal projection of the spheroid onto a cone
that intersects the spheroid at the two standard parallels.

To satisfy condition I in term& of regular Cartesian coordinate_ x and y must
be functions of • such that

x2 + y2 = K2 f(_). (2.2)

This Condition,. if satisfied__will cause the* parallels to plot out as arcs Of
concentric circles_

TO meet the second cOnditian, x and y must be a function of _ Such that

y = m(_) x. (2._)

This c0ndition, If satisfled, will cause the_merld_ians_to plot out as radials
from a Common origin point. ,'

Solving equations (2.2) and (2.3) for x and y yields

2-1
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_,_ x _ K ....[1.'1+_-m:t(_)].--' and Y _ ""'" _,[1 + m_(_.)] +

i!, If the fune ti0ns x and y exist and are 0rthomorphio, Satisfying conditions 3
and 4, the Cauchy-Riemann equations must be se, tisfied. ExpressiOns for

_x/0_, _x/B_, _y/B_., and _y/B_ are given below. Note that in equations
_+ (2.5) to (2.13), f(_) is represented as f and m(_,) is represented as m.

_ a.x,.x= -K (f)l'+' m m'_-(j_+ m)s/z. (2.5) _

__. f'ax = K (2.6)

ay ._ K (f) :t/_"m'+
O_ (1 + m")*l= .... (2.7)

_'Y=K m f* ....
aT 2(f) x/2 (1 + m=) x/a +_ (2.8)

The Cauchy-Riemann equations (eq. (1.46)) are expressed as

a_x = _y. and a_x =._ a.Y. (2.9)
07, ,3',:. a'_ 87.. ' ..........

from which, by substitution Of equations (2.$)+ to (2.8) into equations (2.9),

f' 2 m'
- -- =-, (2.20)

f 1 +m, 2 "

Since it hes been shown that f is a function of • alone and m. is-a function

of,)_ alone, equation (2.10) can be true Only if both terms in the equation
I are equal, to the same cons.tant,+ which for convenlence will be called 2L ....

F.quating each term Of equation (2.10) to 2L xields

f* m+
--=-2L and - L, (2.11)f ...... " I +.m" +-

or, in terms of total differentials,

d.f.f e _ 2L dx and dm..... _= L dk ....... (2.127
f l+ma

t

The s01utions to equations (2.12)._are

In f(x) = -2L_ and tan [m(k)] = Lk, (2.13) ,_
r

t

or

f.(_) - e -2L_ and re(Z) = tan LZ, (2.14)+
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where e is the base Of the system _f Napierian logarithms. Substitution of
equations (2.14) in place of f(_) and m(_) in equations (2.4) yields

: x =K e-L_-¢Os L_ and y = K e7L_ sin L_. (2.15)

Since x and y may be given, in terms of pola.r coordinates .r and a aS

_.

x e r cos u and y= r sin a, (2.16)

equations (2.15) may be rewritten as

r = K e -L_ and a = Lk. (2.17)

It was previously shown that the isometric latitude, _, is given by the
relation

= In tan + 1 + s sin _ '

or, in terms of conformal latitude, _,

_ _- In tan (_ + _) . (2,19)

The equation for r may now be rewritten as

1
r =K

I

Equation (2.20) is Obviously based on the use of radlan measure for all angles.
in degrees, equation (2.20) becomes

r, KtanL/9° " (2.21)
,,f

and, if z represents eonformal colatitude defined as

z = 90 - p., .... (2.22)

then the expressions for the polar coordinates r and a may be written as ........... _."

r _ K (tan 2)L and___a - Lk. _ (2.23)

It now remains to evalnate the constants K ant_ L. This is accomplished by

applying the final Condition that the lengths of the two standard parallels be

2-3
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true. To satisfy this.c0ndition, the ratio of the lengths befog© and aft©r the
transf0_m__tion must be the same, ox

2nN_cos Ps 2nLrs !
+ _++"_ (2.24) _ +

2_Nac°s Pz 2.Lr+

from which

N= cos 91 r_ Ke"L_a ....• "L'_I

+ = ---- = _= _LI; a (2.25)
NL cos.pz r=. Ke -L_;_ •

Taking the logarithms of .the left and sight terms of equation _2,25) yields

in N x + In cos Pl -In NZ - In cos pz
L=

'Cz - _I
J

In Nx --In N= + in. cos Px - In cos p_

= _ . zz zl .............. (2,26) .....

In tan _-- In tan"_"

Now, by again making use of the lquality in the lengths of thLparallels before .t
and after the transformation,

2_Nxc°s Px "_ 2nLKe'L':a and 2nN2c°s +_z = 2_LKe-L*:z ,- (2o27)

from which

Nxc°s Px N:_cos p_

K = /z.,'_L _ /zz_L " _.. (2.28) _I+

L tan_T/ L tan_T/. !

This completes the derivations of the planar coordinate equations for the

Lambert conformal conic projection.

Geodetic to Lambert Computations

The steps to be followed in making the geodetic to Lambert confOrmal
transformation are as follows:

1. Determine the geodetic latitudes for the two standard parallels,

with Px being the latitude Of the north standard parallel and ,j
p_ being the latitude of the south standard parallel. Store !

both parameters, t2-4

t
i i
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i: 2. Enter and store, the 8codettQ latitude .and. longitude of the origin
I point sol_cted for the-partleulal-_map (p_,).o).

!
_ 3. Enter and store the scale factor for the particular map bei_ s used (for

example, 500,000, 2,000,000, etc.)
L_

4. Calculate values for N_ and N2 from equation (1.6_ using the appli-
cable spherQid values of a and s.

_ 5. Calculate values of _pherical conformal latitude_ _ and _a
corresponding to p_ and _z us ing_eAuatiOns (2.18) and (2.19).-

6. Determine values of conformal colstitude za and z_ from
equation (2.22).

7. Calculate convergence, L, from equation (2.26).

i 8. Calculate K from equation (2.28).

9 ......Calculate the magnitude of the apex-to-origin position vector,

i ro, from equation (2.23).

10. Enter the target point's geodetic latitude and longitude, and compute ,.
the values of z and a by the same procedures as described above (eqs.
(2.18), (2.19), (2.22), and (2.23)).

11. Determine the target's position in Cartesian coordinates from the
angular relationships shown in _igure 2.1.

12. Add the bias term to x (if Callfornia Lambert), apply the necessary
unit conversion (for .example, to convert meters back to international
survey (I.S.) feet), and divide by the selected scale factor.

Lambert to Geodetic_Computations

' in the baseline Lambert to geodetic program, the forward (geodetic to Lambert)
equations are used in an iterative fashion to obtain &eodetic coordinates from
Lambert x and y ve_lues. The procedure is: .....

I. PerfO_n s_eps 1 to 9_of the geodetic to Lambe_t sequence described in
the_previous section.

2_. Enter-scaled values of_x and. y in selec_ted units.

3. COnvent to meters and full scale for_computati0ns, r

4. Obtain r and a directly from equations (2.!6).

5.. Knowln8 L and u, obtain the value Of'longitude dlrectly from equation
(2.1"/).
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+]: 6. EnowlnB. r, K, andL-L-i SOlVe-eqma+tion (2.21) for _.

.i, 7. Usin_ this. value Of _ as the first, trial value for _, solvo cCuation.
Pi_ (2.18). for 4, and using that value of _,_obtain. a comparison value
: of _ from equation (2._9) The difference between the actual value o_

and the Computed value Of _ is nearly the same as the amount of error 0

,_' in _. Thus, _ is adjusted by the same amount as the error in _ and a !
_/+ second pass is made using equations (2,18)and+(2.19). The error in _ •

on the second pass will be much smaller, and it is +again used tO adjust

i_ _. The iterations are continued until a value of-_ iS obtained for {I

i J

which the computed value of _ equals th_ actual value as originally _+i,
obtained from equat:ion (2.21),, •

i 8. When the starting and endin 8 values of _ are equal, the value ofis correct..

Four £teratlons are generally required before agreement is obtained to the iprecision limit Of the present 12._Igit computing• system, t+!

California Lambert

The plane, coOrdinate system for the State of Callfor_la consists of s_,ven
Lambert zones. Transf0rmatlons-fOr points in each of the zones is ac_mr, lished
in the same manner as described for general Lambert transformations, ,_::_ept

that in-the_ California system a bias factor is added to th_:-_ coor_;..,ate so
that,,the x values.are always +positive, For the first six Callfo.tnia zones the
bias factor is an even .2 ,000,00O I.S. feet. For zone 7 the b.,:_'_'is
4,186,692.58- I.S. feet.

The lines of separation between the zones rUnrapp_oximately cast and wes_
following, county boundaries, with zone 1 being the northernmost zone and zone 6
being the s0uthernmost+zone. Zone 7 is a speclal.+zone that ha: been set-aslde__- ..............................

for Los Angeles County. In transition areas, two zones may. be specified on
central data sheets. In the case of Edwards Air Force Ba,_e., this allows local

control points to be. referenced to the zone _ system_lyir_ tO the no_th and to
the zone 7 system lying+ to the south and east. --.

Unlike aeronautical Charts which have widely separated standard parallels _nd
cover large, areas of the country, the standard parallels fo_ state zones are
placed just one or+twO+degr+ees apart and the c_verase areas are limited to
narrow horizontal bands that may extend over only three or four counties.. This
is done so thatmap convergence and magnification are sufficiently minimized
that only minor CorreCtions must be made to angle and distance measurements :+
made by survey teams. In fact+ much private sarvey work is accomplished /
without regard to either magnifica.tion Or angular convergence, and computations
are performed with flat-earth mathematics, For small parcel sur,._,s, where
extended base legs are not involved, these calculations are often acc_ra.te
enough for many practical +Commercial applications. However, for NASA 0_

military control nets,_J_n__shir_h high'p_:_ :_ion, 10ns-range tracking systems are
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operated, it is _xtrcmely important that all field work end_methometical

, computations be Carried out with the best posstbl_ accuracy and precision.

b

, Table-2.1 lists the Lambert parameters for each of the seven California survey

i_' zones. In the baseline geodetic program, when a. California zone has been
selected,, the program automatically initializes using the stored Lambert

. parameters for that particular z0ne

i" TABLF_,_2,_I. CALIFORNIA SURVEY ZONES _.
...... _ . ±

zone Olat Olon Bias 9.fat N iat=:

1 39 20 00.0 122 00 00.0__ 2,000,000 40 00 00.0 41 40 00.0

'2 3?40 00.0 122 00 00.0 2,000,0Q0 38 20 00_0 39 50 00.0

3 36 30 00.0__ 120.30 00.0 2,000,00_0 3'/ 04 00.0 38 26 _00.0

4 36 20 00.0. 119 O0 00.0 2,000,000 36 00_00.0 3"/ 15.00 0

5 33 30 00.0 118 O0 00.0 2,000,000 34 02 00_0 35 28 00,_0

6- 32 10 00.0 . 116 15 00.0 2,000,000 32 47 00.0 33 ,53 00.0

T 22 45_43.T5445

7 (continued) 118 20 00.0 4,186,692.58 33 52 00.0. 34 25 0.0.0

i Lambert Programs

_. The Lambert conformal programs listed here omit certain of the housekeeping
i functions, which are present, in the actual routines. However, all of the

essential cOmputational routines and subroutines are provided. !

Variable Names

Name .... Descr tpt ion 1

Aa Semt_ajor axis o£ selected earth spheroid _ [

&

Arg. Tangent ar&._¢,,_ in e0_atlon for isometric latitude . ;I

Bias Bias in meters for selected California Lambert zone
(0 if not in California Lambert mode)

2-?



Count Number Of iteration passej within secondary window r_ange

I)08 Value of degrees returned from Dmstodcs subroutine

Dlon Difference between origin and target lo_nsitudes

Dlonl Angular. difference between orisin and target
meridians on planar conic .projeCtion

E2 Eccentricity S..qga_r ed

Eo-. ECcentricity of selected. 0arth spheroid

Eslnphi E_SIN(U)......

K Lamber_ constant

L Map. co nve r ge_nce

Lx .... Lambert x in meters (x blas removed) . .

Lxl Scaled Lambert x in input or output units
(includes x bias for Callfarnia Lambert zones) ..

Ly Lambert y in meters ......

Lyl Scaled Lambert_ y in_input, or output units

N E-W radius of aurvature (general)

Nn E-W radius of curvature along north standard parallel

Ns ................E_W radiuS.of curvature along south standard parallel
r

Olaf Origin latltudeAn degrees

R1, OrAgin-to-target (hypQ.tenuse) direct Lambert distance

li Ri Working valuemf magnitude of apex, to-target vector
r,
i,

!,i Re Magnitude of apex-tg-orlgin vector

Rz2 Magnitude of apex-to-target vector ................

Scale Map sCala_(for example, 500,000) r-

U Geodetic la ti£ude

Ucnv . ConverSiOn factor irom meters to selected Units

Xi Working value of eonfOrmal latitude
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i:
7,i Workln/_ value of cOnfOrmal cOlatitudo

Zlast Last valuo Of. tar_ot l.-tttudo in rovcrs¢ itcr_t|on .........

Zlat .__Target l_titudo In_do_reos

_I ZlorL Te,rg_t longttude In_dogr_a_

Zn Conformal colatitudo of north standard parallel

Zo...........Conformal colatltude of._ar_in point

i Zs Conformal colatitude of south standard parallel

Zz Conformal colati_ude..of target

Zz0 C0nformal.colatitude of target

Zzl Current trial.input value of geodetic latitude

Zz2 Current trial conformaI co latitude value

Computationa 1 Algorithms

The essential algorithms, for the-Lambert routines were written for the System

45 computer which is _programmable only in.BASIC. Therefore, all algorithms are
given in BASIC.

A, Lambert Initialization Routine: The values, of the north and sauth standard

parallel latitudes., the origin latitude., the origin, longitude., and. the map.

scale and bias factors are required for. the initialization routines ....These
values are ei._her,entered mannally (for.normal mapping solutions)or.

automaticallz picked up from stored values .(for California Lambert zone

solutions). The progr_,m then computes all of the non-varlable parameters
required by the. computi:tional subrOutines. These pa.rameters are Nn, Ns,
Zn, Zs, L, K, and Ro.

I. _U=Nlat
2. GOSUB Ncalc
3. Nn-'N
4,.. GOSUB..Xical C.

6. Zn=Zl _
6. U=Slat

' 7. .GOSUB Ncalc _"
k..

8.. _ N sffiN ,,
9., GOSUB Xicalc

lO. _Zs=Zi
II. U=Olat
12.. GOSUB Xicalc
13. Zo=Z i
14, GOSUB Lcalc.
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,:. 15. GOSUB_K_alC.

16. Zi=zo
', 17... GOSUB Rical c

!: 18. Ro=Rip'

I" B. Geodetic to Lambert. Com_utation'. The operator enters the target latitude
(Zlat) and.longitude (Zlon).. The target's conformal colatitude (Zz).. is-

,_ then computed for use in sUbrOutine Ri_alc which returns the magnitude of
the apex-to-target vector. The difference in longitude .(Dlon)betwee ' he

'_ origin longitude (Olon) and the target longitude (Zlon) is obtalned in step_

5, and that difference (Vlon) is then multiplied by the map convergencefactor (L) to obtain the difference in longitude (Dlonl) between the apcx-
to-Origin and apex-to-target vectors (fig. 2.1) .... Step 7 resolves the pola_
coordinates of the apes-to-target vector (Ri and D10nl) into Lambert

Cartesian coordinates (Lx and Ly) in subroutine Lamxy. Lx is then adjusted
by the amount of the California Zone bias (Bias), converted from meters

into the selected output units, and scaled as necessary. For general
Lambert conversions, the-bias term is 0. The Ly coordinate is converted to

output form in a similar manner except that there: is no y-coordinata bias
in the California and general Lambert systems.

I. U_-Zlat
2. GOSU]I Xicalc .+.
3. Zz=Zi

4.. GOSUB- Ricalc

5 .. Dl:on=(Olon-Zlon)
6. Dlonl=Dlon*L.

7.. GOSUB Lamxy
8 .... Lxl--(Lx+Bia s)*Ucnv/Sca 1 e:

9. Lyl=Ly,Ucnv/Seale

C. Lambert to Geodetic Computations: The operator_enters the scaled Lambert x

and y coordinates (Lxl and Lyl) in the selected units. The program removes
the x bias (when California Lambert has been selected), adjusts the values
to full scale, and converts the distances from the selected input units to
maters. The adjusted values (Lx and Ly) are then used to compute the
magnitude (Rz2) of the apex-to-.target vector, and the angle (Dlonl) between
the origin and target vectors. Dlonl is then divided by the map's
longitude convergence factor (L) to yield the true longitudin_,l difference ...................................

(Dlon) between the origin and target points. The actual target longitude
(Zion) is then found by subtracting the 10ng.itude-difference (Dlon) from
the ori$in longitude (Olon). The target latitude (Zla.t) is obtained
through the iterativa routine described in the Lambert to Geodetic
Computations section on page 2-5.

1. Lx-_Lxl/Ucnv*Scale-Bias _"

2. Ly=Lyl/Ucnv*Scal e
3. IF-Lx<>0 THEN GOTO 7
4 .... Blon=O

5. Rz2=Ro-Ly
6. GOTO10
7. .DIonl =ATN (Lx/.(Ro-_Ly))

, 2-10
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If'

8. Rz2,4,x/SIN(D1 on1)
I' 9, Dlon=Dlonl/L

i. I0.. Z1on-OIon_D1 on
I' ii. Zz0=ZzI_-2*ATN((Rz2/K)S*(1/L)

il+ 12. u_90-Zzl' 13. GOSUB XicaL¢
14 Zz2=Zl

K • "

15. IF.ABS(Zz2-Zz0)<$E_I0 THEN 18 .............................................................................................

ll, 16.. Zlast=Zzl

17. ZzI=Zz0+ZzI-Zz2
18. IF-Zlast=Zzl THEN Count-_Connt+l
19 ....IF C0unt=3 .THEN 18

20. GOTO. 12
21 .... Zl_ t_U

IL Subroutine Ncalc: This subroutine Computes the E-W radius of. curvature

at lati:tude U based on the selected spheroi_parameters a (An) and e_
(E2).. It is a direct implementation of equation (1.6).

1+ Sinu=SIN(U)
2. Sin2u=S inu*S inu

3. N-_Aa/SO/{(I-E2*S in2u)
4. RETURN

E. Subroutine Xicalc: This subroutine computes values for conformal lati-
tude and conformal colatitude for a point at latitude U on a spheroid whose

semimajor axis Aa and whose eccentrici.ty squared is E2. The conformal
latitude (Xi) is obtained at step 3 by _solving a combined form of equations

(2.18) and (2.19) for_. Step 4 yields the eonformal colatltude by a

..........................i...........Idirec.t implementation of equation (2.22). +.

1. Esinphi=Ee*SIN* (U)

2 ....Arg=45 +U/2 1
3. Xi=2* (ATN(TAN (Arg) *((I-E sinphil/_(_+Eslnph i))** (Ee/2) )-45 j
4.. Zi-_90-Xi. I5. RETURN

F.. Subroutine Lcalc: This subroutine computes .convergence by _ _ir')_t
implementation of ._equation (2.26).

I. L=LGT(Nn)-LGT(Ns)+LGT(COS(Un)-LGT(COS_Us)))/ ......
(LGT(TAN(Zs/2) ) -LGT(TAN (Zn/2) ) )

2. RETURN ...........

G. Subroutine Ricalc: This. s.ubroutine computes the magnitude of. the apex-to-

target point vector by +use of equations (2.21) and (2.22). _,
t.

r

1. Ri_:K*TAN(ZI/2)**L
2.. RETURN_

H. Subroutine Lamxy: This subroutine computes Lambert x=y coordinates from
f

l
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the-angular r01ationshlps between the veCtOrs Re and Ri as shown in f ipurc
' 2.1• _

_;, I. _Lx=RI*SIN(Dlonl)
2 I,y=Ro-RI*COS (D1onl)

ix •

, 3. RE2_I_N

""_--_C.mnlc apex point

i I,Ak

,¢ r 0

r

Figure 2.1.

Program Operation

The Lambe_t routines are part of th_maln program GEOD. When GEOD is run, tke,

operator is asked ta select the unlts _nd datum/spherold reference applicable
to the computatlOns to be pgxformed._After, thcse selections are made, the
master menu selection is displayed. One menu selection is LAMBERT

TRANSFOIO_TIONS. The Operator makes the appropriate nmnerical entry and the

main program enters the Lambert routines. The operator is then prompted .to
make several simple selections. The prompting messa89s.and._;ogr@m options
that appear on the CRT are shown below,

A. _{odo selection

SELECT. MODE .

0 .= GEODETIC TO LAMBERT

1 = LAMBERT TO GEODETIC (
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B. Output dovloo selection

SELECT OUTPUT D.EVI_E

0 =.CRT
1 =. THERMALPRINTER
2 " LI_E PRINTER

C. Parameter selection

SELECT INITIALIZATION PARAMETERS

0 = MANUAL ENTRY
1 = CALIFORNIA LAMBERT.
2 = CALIFORNIA LAMBERT WITH SPECIFIED ORIGIN_.......

If the operator enters 1 or 2 and continue (COI_), the program proceeds to
step D. If the operator enters CO_, the program proceeds to step E.

D. California Lambert zone selection

ENTER CALIF .ZONE (1, 2, 3,__.4, 5, 6, OR 7)

If l was selected at step C, the program uses the standard origin point for
the selected Calif_rnia zone. If 2 was selected at step C, the program
uses the stored north and south standard parallels for the selected
California zone but requests an operator entry of the desired origin point.

This is primarily: intended for survey applications in which the N-S and E-W
coordinates of a new point are to be_computed .from an existing survey
marker.

SELECT ORIGIN . .

ENTER ORIGIN LATITUDE (D.MS)
ENTER 0RIG IN LOHflITUDE___D. MS)

E. Manual input of Lambert parameters: If California L_mbert was not selected
at step C, the .operator must input the Lambert parameters needed for the
tzansformation. If California Lambert was selected, step E is bypassed.

1. Selection of north standard parallel

ENTER. LAT_.OF N STD PARALLEL. iN D. MS

2. Selection Of Sauth standard parallel

EHTER LAT OF S _TI) PARA_LI_ IN D.MS (

3_. Seleo.tion of .origin iatitude _

ENTF_ LAT OF ORIGIN IN D.MS

2=13
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I

i:+ 4. Selection of origin longitudo -

! EN/ER I,ON OF ORIGIN.IN D.MS

i_, F Selection or rejection of Lambert parameter print0ut
t ....

,!
,_ TO PRINT LAMB_ARAM, 1 AND CONT

l If 1 and CONT are entered, Ihe following parameters will be: printed out on

• _ the selected out_put device.

I. Latitude of north standard parallel in dms, deg, and radian values
) 2. Latitude of south standard pe_rallel in dins, deg, and radian values

3. Origin latitude in dmso des, and radian values
4. Origin longitude in dins, des, and radian values
5 .... Nn (E-W radlus_of curvature on north standard parallel)
6. Ns (E-W radius of curvature on south standard parallel)
7. Zn__Conformal colatitude of north standard parallel)
8. Zs (Conformal colatitude of soUth standard parallel)
9. Zo (Conformal colatitude of origin)

10..Ro (Magnitude of apex to origin yector) .....................................
Ii. X .(factor).

12. L (map convergence)

G.. Geodetic to Lambeact computations (if menu selection was for. Geodetic to
Lambext mode) :

1. Operator entries

ENTER IDENTIFICATION OF POINT:

ENTER.LATITUDE IN D.MS (EC_ 35 42 33.5643 -_35 .42331643) ..............

ENTER LONGITUDE IN D.MS (EG' 117 23 45.3214 = 117,23453214)

2. Program Outputs (on selected output de vicoe) ..

NA_. OF POINT _.

GEODETIC LATITUDE = (Value-given in dins, des, and radians)
GEODETIC LONGITUDE = (Value given in dms, de8, and radtans)

LAMBERT X-= (Value given in selected units)
LAMBERT Y = (Vaiue given in selected.units)
LAMBERT R = (x-y triangle hypotenuse in aelected_units)

h.

3. Program pause: Upon depressing CONT, tltLprogram returns to step G-1 ,,
for entry Of the next geodetic point.

2-14
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I[. _Lambert to gcodetlo Oomputations (if menu selection was for Lambert to
!' 8oodotic mode) :

_i I. Operator-entries:

:! ENTER IDF_TIFICATION OF POINT

_,_ ENTER L_IBERT X VALUE IN S_ECTED UNITS AND SCALE

:'_ I_TER LAb_RT Y VALUE IN_SELECTED UI_ITS AND SCALE

2. Progr_ outputs (on selected output device):

NAME OF POINT -

LAMBERT X.VALUE = (Value given in selected units and. scale)_..
LAMBERT,Y VALUE_= (Value given in sselected units and scale)
LAMBERT R VALUE = (Value given in selec_ted units and scale)_

GEODETIC LATITUDE = (Value given in dins, des, and radians)
GEODETIC LONGITUDE = (_Value given in dins, alaS, and radians)

3. Program pause: Upon depressing CONT, the prgsram returns to step H=I
for entry of the next Lamb_r.t.point.

Program Validation

The Lambert rOutines are validated by using U.S.. Coast and Geodetic Survey
horizontal control data sheets for established survey points throughout
Southern California. During a validation exercise, any points can be selected
and used in either the fox'ward or reverse programs. For the comparison given
in table 2.2, several first and second order survey points were selected at
random. The first line of each entry gives the geodetic latitude and longitude
of the point along with published USCGS Lambert coordinates. The second line
provides the Lambert coordinates_computed using the GMD routines. In table

2.3, the published USCGS Lambert coordinates for the same points are shown on
the first, line of each entry. The second line shows the geodetic coordinates
calculated by the GMD routines using the USCGS Lambert values. When GMD

Lambert values are input to the program, the calculated coordinate values are
..... identical to the original geodetic coordinate values. The differences between .....................

USCGS.and GMD_sults are equivalent to an earth spheroid distance of only
about 0.01 to 0.02 foot and therefore are not significant, even for the mast ....
precise survey wOrk. However, since, the Gb_) Lambert routines are based on

closed-form solutions of the transformation equations, any discrepancies shown _-

must be attributed to roundo£f errors in the G_ql) computations, to approximation {
0r round0ff errors which, may be present in the USCGS routines, or to both.
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Station Source Latitude- .... L_n_t_de _ Lambert _X..... Lamb or_-

_" California Zone. 5

h

i;: Soledad USCllS 34 58 $7.1271 118 11 16.5426 1,943,705.88 539,573.73

GM]) _ 1,943,705.88 539,573.74

_Yillow USCGS 34 53 00.7287 i18 16 31.8072 1,917,374,47 $03,604.72

Springs . G_).. 1,917,374.47 503,604.73

i USCGS USCGS 34 53 00.3234 118 16 31.8553 1,917,370.30 503,563.77
3293 G_iD 1,917,370.30 $03,$63.77

Mint USCGS 34 34 00.7650 118 16 41.0384 1,916,286.65 388,368.63

G_Q) .... i,916,286.65 388,368.63

]
Oban USCGS 3_4 45_14.6870 118 08 43.28.16 1,956,338.26 456,410.30

GMD 1,956,338.26 456,410,31

Lope USCGS 34 48 29.9146 118 21 33.8124 1,892,117.22 476,307.27
GMD 1,892,117.22 476,307.28

USCGS 34 54 00.2985 118 21 28,3580 1,892.,690.93 509,704.59 !IBajada
GI_D 1,892,690.94 509,704.60

California Zone 7

Sur USCGS_ 34 41 20.8412 118 19 24.5217 4,189,655.48 4,363,19.7.08

GMD 4,189,655.48 4,363,197.07

SUrse USCGS 34 35 54.6055 118 27 08.8435 4,150,840..11 4,330,235.81
GMD 4,150o840 .i0.--4,330,235.79

Pelona USCGS 34 33 39.2730 118 21 18.4042 4,180,134.86 4,316,533.90_
G@ 4,180,134.86 ......4,316,$3.3.88

Mint USCGS 34 34 00.7650 118 16 41.0384 4,203,332.54 4,318,710.47

GMD 4,203,332.54 4,3.18,710.45,
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_' TABLE 2.2. LA_ERT TO GEODETICVALIDATIONS

Station Sou roe Lambert x Lambert y Latitude Lons-itude .....

i California .Zone 5
i

_ Soledad USCGS 1,943,705.88 $39,573.73 34 58 57.1271 118_11 16.5426_
_:,_ OMD 34 $8 57,1270 118 1116.5426

ii_ Willow USCGS-1,917,374.47 503,604.72 34 53 00.7287 118 16..31.9072_
Springs GMD 34 $3 00.7286 118 16 31.9072_ ..

i:
USCGS USCGS 1,917,370.30 $03,563.77 34 53 00.3234. 118 16 31.8559

i 3293 G_) 34 52 00.3234 118 16 31.8559

Mint USCGS 1,916,286.65 338,368.63 343400.7650 118 16 41.0384
G_ .... 34 34 00.7650 118 16 41.0384

Oban USCGS 1,956,338.26 456,410.30 34 45 14.6870. 118 08.43.2816 .
GMD 34 45 14.6869 118__3843.2816

Lope USCGS 1,892,117.22 476,307.27 34 48 29.9146 118 21 33.8124_
GMI) 34 48 29.9145 118 21 33.8124

Bajada USCGS 1,892,690.93 509,704.59. 34.54.00.2985- 118 21.28.3580
GMD 34 54 00.2984 118 21 28.3581

California Zone 7

Sur USCGS 4,189,655.48 4,363,197.08 34_41-20.8412 118 19 24.5217
GMD 34 41 20.8412 118 19 24.5217

Surse USCGS 4,150,840.11 4,330,235.81 34 35 54.6055 118 27 08.8435
GMD . 34 35 54.6057 118.27 08.8434 .......

Pelona USCGS 4,180,134.86 4,316,533.90 3433 39.2730 118 21 18.4042
GMD 34 33 39.2732__118 21 18.4042

Mint. USCGS 4,203,332.54 4,318,710.47 34 34.00.7650 118 16 41.0384_
GMD _ 34 34 00.7652 118 16 41.0384
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CHAPTER 3
I

_ TRANSV_'_RSEMERCATORTRANSFOI_fATION EQUATIONSi!.

J: General Theory

I, The dertvatio_ of the transverse Mercator _transformation equations is based on
complex varigble theory. If there e.,-,ists an analytic function of k and_.

' such that

i • + ly = £(_ +:i_), (3.1)

then the transverse Mercator transformation equations can be derived by applylng

the following, lnltla_ conditions.

l. The transformation shall be orthomorphic (conformal)..

2. The scale shall be true along.the central meridian,

It. has been shown that the equations

IR= _'sec g dg and X = _ (3.2)
0

conformally map a spheroid onto a plane, Thus, the use of these relations in ...........................
the transformation equations will insure the orthomorphic requirement.

To meet the .condition that the scale..be .true along the central meridianj, where !

• = 0 and _ = 0, equation (3.3) must be satisfied. 1
l

iy = f(i_) = iS (3.3)

As previously noted, Sg is the. true length.of the meridional arc from i

Jlatitude 0 to •latitude p.......

It has also been shown that ,i
....................... I

Sp = |_ R.dg.,._ (3,4) _"
0 t

Differentiation of the eXpression for • given in equations (3.2) yields

'1
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I;
b

i"

!), ,-

; Or
g.t

i_ N cos-p d¢ = R.dp. (3,6)

f! which when substituted for R dg in equation (3.4) yields

P

f(._l.....=...Sg =-; N cos p d_, (3,7)
o

Forward Calculations

If x + iy = f(_ + i-¢) is expanded about, a polnt on the central meridian (i_).
using Taylorts. theorem, the followlng series is obtained..

x + iy = f(_, + i¢) = f(i¢)+ ;_fx(tz).+ _'f_(i¢), + 3!

l.' k_
41

8! fg-(i_) +_ fJ(t=)_ + ...... (3.8)

(Note that, _as used in equation (3.8) and others to follow., the terms.f_(i_),
fs(i_), .... LiKnify the-sec0nd_ third, .... d_rlvatives of f(i_).) ....

r From ecLuatlons (3.3) and (3.6)_, t.(_¢) = tSp = If(c).. Successive differentia-,
tion of this equation and substitution of the results into. equation (3.8) .yields

x + ly = it(:) + _.f_('c)--2--[..its(z)-/_"fs(z) + _" If4(¢) + 5"T"f'(":)+

The_ succ.esslve dlffer_ntiatlon of f(_) is a lengthy process in which it is
convenient to establish the following relationships: .

IN]'" 2(N ":..R)N' _ (N - R)tan p, R' : 3 _ (N - R)tan. p, _a e -.- R -tan p, _.

du_.N
d_ = R cos _, (N cos _)' _ -R sln _, and

(N sin p)' = see p(N - R sin_p) = (R _os p)/(1 - _) ..... (3.10)
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:: The function is analytic at all points, and equations (3.14) and (3.15) have
! been derived using initial conditions set for the transverse _lercator

projection Furthermore, it was shown earlier that if an analytic function,
il employing equations (3..2), can be found to satisfy a selected set of initial
_: conditions, the resulting mapping must also b0. 0rthomorphic. Hence, the general
_::_ form of the transverse Mercator projection provides true measurements On the

central meridian _ile also preserving angular measurements throughout the
mapped area.s.

iii: Equations (3.14)and (3.15) are Used in the geodetic program to compute
transverse Mercator x and y values. Several simplifled forms of equations
(3.14) and (3.15)are given in references 1 to-3. Since time was not a critical
factor._in the baseline-program, it was decided to use_ equations (3.14) and
(3.15) without simplificatfan so that the highest levels of accuracy could he
maintained in the results. At the present time, the baseline programs are

designed to operate on a 48-bit (12-decimal-digit) system. The programs may be
converted at some future date tO operate on a 64-bit donble precision system,
and in such case the additional te.rms will affect the results.

Inverse CalculatiOns

It is now desirable to develop formulas for • and _ in terms of the
rectangular coordinates x and.y. The inverse.function may be written as

+ i_ = F(x .+ ty). (3.16)

Again applying the initial condition that _ = 0 when x = 0, equation (3.16)

becomes ,!
F(iy) = (i_). _ (3.17)

Using a Taylor series to .expand F(x + iy) about a.,point iy yields

x_ F:_ x_ x4 x s
+ i_ = F(ly) + xFX(ly) + 2T (iy). + : F*(iy). + _ F*(lyl. + 5T F:(iy) +

i xe F'(iy) + F _ XS F s
I 6! _ (iy). + _-_ (iy) + .... (3.18)

(Note that, as Used in equation (3_18) and others to fallow, the terms F_(i_),
F_(ly), ... signify the second, third, .... derivatlves..-of_F(ly).)_

Since for the init_iaI conditions set forth F(iy) = i_, it can be shown that

FX(iy) = _* F_(iy) _ -LzL', F_(iy_) =-." _'_

F_(ly) _" - _'', F!(iy)= i_ "m. , (3.19) /

and so forth. Equating the real and imaginary parts of equation (3.18) yields



X,_I-

!.
and

i,

. x_.._;,,, x_', _,,,.+ x, ,,,,,,,__,_;,+ - - (.s..21)'_ _ '_, 2l ._ 6l _ '_" ....

_ 0 r subso_ipt 1 in equations (3.2.0) and (3.21) refers to the _.atitude Of the

i_'_ footpOint, The footpolnt is the_horlzontal projection of. the tars©t point onto
: the central meridian. Mor_ simply &tated, it is the point which would be

obtained_if the transverse.}lercator x coordinate, were zerobut the y ©oordJ.na.te.

remained.that of the targe.t poJ, nt. The.relation of the foo_tpoint to the__tarset
point is shown in figure 3,1.

Central
me ridi.a.n

Figure 3.1.

Again) the various derlvatlves.nf • are p_ovided from..the equation

% = _ sec.p dp = S R dtt,.__
o o
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_'_'_--"_ ,.-_l_ • ... _ ............................... T_ '¸ r--_

i

,..+ ft.omwhich

1...... ,c" _-_-(_-2"QOs-_)'_ .rid d_ _ ! (3.23)

I, Continuln_ the differentiation yields -

NSCosl_t dS

t_

cos + 2sln.

= NSco3Z_
P

I = I (I.+ 2tz _:-_12), (3.24)N'cos p

where t = tail_p, _. = 8 cos_l_,._a.nd 8 = eZ/(l-s z) ..........

Again, the higher order derivatives become, very cumbersome end are omitted from
this document for the sake of. brevity.. For those .who may wish. to inquire

further., complete calculations of all derivatives through the eighth order-are ,_
provided in reference X.

At this point it should be noted that since the val_e of longitude obtainedmfrOm
equation (3.20) is actually the.. difference in longitude between the .target
coordinate and the.central meridian, in the. e.qua_ions to. foll.ow,the term A_
will be _substituted for. _ to eliminate confusion. Substitution of the-higher
order derivatives into equations _(3.20) and (3.21) now yields

1 Ix.]el5"+ 6_ + 28t_ -3"q_ +. 8tITI _ 1

+ 1-_'-LN-:'] L+ 24t_ - 4_ + 4t_l_ + .24t_rl_]

A_. _ sec p_ '61--+ 662tzs + 1320t_ +-720t_ + 107_ (3.25)

+. 43r1_ + 440t_Tl_ + 97-_1_ - 23o4t_

'-'L_J', 336t.:rl:, 188_: - -772t:_I:- 192t4_ 4

+ 88Tt_° - 2392t_x_' +-408t(_

32t_ ++ 1536t_ --i6 _ _o 19.20t]_xxo

t r
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Starting with the relation

the derivatives Of p_ with respect to _ Can be expressed as

dp., N=
-'-- =- cos p_= (1 + _1_) cos Ea, (3.29)de= R= ......

and so forth. A complete derivation of the higher-derivatives of p with respect '
to--_ is provided in reference 1. "

Substitutin8 the hisher derivatives of p with lrespect to _ and the relal:ion
for A% 8iven in equation (3.26) into equation (3.27), the various coefflclent
terms Can be eventually reduced to y leld the following equation for _ based on x
and the footpoint latitude:

-7 ......
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iI

ti'
_' r_ 61 _ 90t_ + 46_ _+ 45t] - 252t_ --3_ +_100_ tt, tl

:7 - - 9ot:,:.,-88,:.,- /
J

�
Xnl) (z_s.+ 3633tI + 40_5tI�l_Stl). 13.31)

Now, recalling that the footpoint lies on the central meridian where the scale

i " is true (that is, where me.ridLonal distance is. equal to the y coordinatedistance), the merldlonal arc of the.footpolnt._p be easily determined from

P

_-_ -_ R_dp = a(1- e_) 1/(1 - e_sin_px) • 13.32)
{ Yx Sp_ .

In expanded form,.

y_ = S = a(1 - e _) + 2_sinZp._ s4sln4p_ e_sin_p_
o

945 _ . e 2079 e ' e •
+ 3-'_e s_n .I_._+ "_'_e-s_n l_,,.,._dl_, (3.33)

In the.baseline program, a method '_'as devised whereby a starting value .of p is
obtained by the relation

=..._/R ° , _, (3.34)

where R '-s the north-south radius of curvature at the map's origin point,
o

This value of p is then used in equation (3.33) to obtain a trial value of. y..
The difference between the trial value and the actual value, of y is then Used in

a corrector equation to obtain an.lmproved value for _..

The corrector equation used in the baseline program is

k,

where S O is the_length of the meridional arc from the equator to the Origin ,,

lati_ude,.S n is the..length of.the meridional arc computed using the _th ]

value of p,.R n._is the nDrth-south radius.of, curvature compute_using the

nth._val_ oue__o.f__f, and y i_s the transverse biercator y coordinate Of the target
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_ point, Since th0 footpoint is th© target pointfs proj0otion On th0 central
meridian (the y axis), it is obvious that the computed meridional arc must equal!,

the distance Of the origin pointWs meridional arc plus the value of the y
! coordinate (fig. 3.2). Thus, when a value is obtained that causes the bracketed

term in equation (3,35) to go to ze_0__th_e correct latitude for the footpoint
i, . has been Obtained.

p_
i

• '_ Tar ge.t latitude .....

Origin .l#._.irude

j Equator

Figure 3.2.

Successive iterations and corrections are performed until the trial value of y
equals the true value of y to within the p_ecision limits of the 12-digit 1computa.tional system. This generally takes three to four iterations.

Int_egration of equation (3.33) is accomplished by a recursive technique u_

the relation i

_ slnnp dp =_ sinn-1 P cos _ + n - 1 _ sin n-2n n _. d_. (3.36)

Thus, for the inverse solution, the value of y is used to obtain the footpoint
latitude. When the footpoint.latitude is obtained, the p_ogram then computes
the various subscripted-terms needed for equations (3.25) and (3.31) and solves
those equations for the true values Of _ and k_ Again it is necessary to note
that simplified forms of equations (3.25) and (3.31) are presented in reference
1. However, to-retain the greatest possible accuracy and allow for. future
upgrades in the. baseline computational equipment to 64-bit precision, it was
decided that the complete form of. equations (3.25) and (3.31) would 'be used in

the bas_line__prog ram. 1

Nevada Mercator

|

The transverse-Mercator plane coordinate system for the State of Nevada consists 1
Of three zones.. Transformations for points in each of the three zones are

accomplished in the Same manner as described for a general transverse Mercator 'i
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projection except_that a bias factor Of SO0,O00 I.S. feet i_ added to the x
t C_ordinate in all zoneS, and the grid length is arbitrarily reduced by a factor

of l/lO,OOD_to reduce Overall scale error. ....

i The reduced map s0alo, compensates for magnification values at points off the
map's-central meridian.._ In a general transverse Mercator'projection,. the map

" scale is t_ue along the central meridian but magnified for all pOints Off the

_i cevtral meridian (fig. 3-.3(a)). With grid lengths along the central meridian
,,, reduced by a.factor of. 1/lO,O00,. the grid lengths are exact at about 56 miles
/. from the central meridian and are 1/I0,000 too large at about 79 miles from the

central meridian (flg. 3.3(b)), Thus, for an east-west band of. about 158 miles,

i'/ the scale no-vet dlffers from l. by more than one part in 10,DO0. Obvlously, with-
out the scale reduction, fleldmeasurements would require greater adjustment_ at
some points.

t._a /Scale ma _ni.fied f-Sp.heroid surface !

i Scal_ gni£iedT- /. ____._.__ / /-,,lapping"---'-"_'_---- / surface .....

SC:lx:Ot _ _eroid - _SSea 11 _ _le
surface exact exact__

_-Scale-

r-Central- Central reduced

meridian meridian-

General transv*rse _Icrcator Nevada transverse r,lercator

(a) (b)

Figure 3.3 ....

The lines o£ separation between the Nevada zones extend approximately north and

south_ following county boundaries. The zones are designated east, central, and

west, with maximum longitadlnal coverage for any one zone no greater than about
3 degrees, Table 3.1 lists the basic transverse Mercator p_rame.ters used for
each of the three zones.

TABLE 3.1. NEVADA SURVEY ZONES

Zone Olat Olon X bias Scale ratio

East 34 45 00.0 i15 35 DO.0 500,000 l:10,OO0
c

Central 34 45 00.0 116 40 00.0 500,000 _ 1:10,000 (

west. a4 4soo.o . 11s 3s oo.0 .. 5oo,oo0 1:10,oo0
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Transverse Mercator Progr_n

,i
._ This soc.ti0n presents, the essential computational routin©s, used for both the
!, forward and reverse t.cansVers¢ Mercator transformations.

Varlablc N_mes

_:: NoJne Description

t A Greek eta+ in Mercator equations where

A2., A4, ... A;, A4, .......

Aa Semimajor axis.of selected earth spheroid.

Arc Length of meridional, arc

Aresave Length of meridional arc from. latitude 0 to the
origin point

Cot Scale factor correction (0.9999 if Nevada)

Corl Bias -fact or.in meters .

Cos Cosine of. target latitude (cos _)

Cos2, Cos4, ... Cos2p, cos4p, ....

D Greek.-delta.in Mercator equations where,
G = s_./(1 - s2)

Den DenOmlnator in meridlonal arc integration term

E2,,,,+_ .°. eL_._e4p ...

Ee Eccentricity Of s_.,elected earth spheroid, s.

Exp Exponent in meridional .ar.c integr_ation term

FI81 Program flag indicating, first pass through
mertdiona 1 arc.-comput atton_ I

I Subscript of tth meridional arc integration term

Imul t (2"I_1) / (.2"I) _'
|

Integl Acctunulated value Of integral !

Integ2 Final value of integral on exit from subroutine i

!
' 3-11___ i



i

7

t,i

"_ii Iterm Part of Ith term in numerical integration!i.

.r, L Difference b©tw_en _a_ge_ and origin longitude,
P_ in radians

Pi"
: L2, L4, ... L__/_, .......

_i' Lat Target latitude in degrees

'_ Lat0 Origin latitude in degrees
Lon Target longitude in degrees .

I' Lon0 Origin longitude in. degrees

Mult_. Multiplier in_meridional arc integration term

N East-west. radius of curvature

Nuarc Intermediate value of_neridional arc

Num Numerator in meridional arc integration term

P Target latitude in radians

Peer Iterativ_ correction to P in footpoint latitude

calculations

Psave Saved value of. origin latitude in radians

R North-south radius of curvature

Radius Met idional radius

Sin Sine_of target latitude (sin _)

S/n2, .Sin4, ... Sin2_j sin4_, .__,,_ .._

T_.. Tangent Of target latitude (tan _)_

Terml.º 2, 3, .., Parts of infinite serie.s, terms in the forward
calculations

Terma, b, ¢, .,. Par.ts. Of infinite series,terms in the reverse
calculations _"

Ucnv Unit conversion factor

X Transverse. Mercator • in meters and without bias
4

X2__X4, ... X_, X', ... Ii
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J,
Xa. Tra_svcrs___lqrcator x in selected units:

_, Y Transverse l_Iorcator y in meters

" Y0 Length Of meridionaI a_c fr_n latitude 0 to the

Origin point .

l i Y2, Y4, ... Y_, Y_, ....Ya Transverse Mercator y in selected units _

Comput ationa_ Algorithms

A.. Transverse.mercator initialization: In the manual mode, the operator enters.
the origin latitude and long!tude-(Lat0 and Lon0). In the Nevada mode., the _.
program automatically Uses stored values of Origin latitude and longitude ....

and proceeds with the following initialization routine.. In. this.._outine,
the radian (RAD).mode is se_ and the scale factor. (Cot). and bias factor,

(Corl) terms are set. Note that Af _ general transverse Mercator solution
is to. be. obtained, Cot is set to 1. If a Nevada transverse Mercator
solution is desired, Cot is set tO 0,9999 to provide, the 1/10,000 scale.
reduction shown in figure .3.3, Cot1 is set to.O for general transverse
Mercator solutions and to $00,000 for Nevada transverse Mercator solutions.

This adds an Xbias. of 500,000 I.S, feet. (table 3,1) when Nevada survey

solutions are desired. Since. all computations_in the baseline program are
carried out in meters,• Corl is multiplied by a factor of 1200/3937 to
convert the bias term to meters. In step 7 the origin latitude (Lat0) is..
converted to radian measure (P) for use in the meridional arc calculation

performed by subroutine A_c. Subroutine Arc implements the recursive ..

equation (3.36) to compute the meridional arc length from the equator, to the
latitude P_ Since the o_igin lies on the_ central meridian, the origin*s X
coordinr_,e (X0) and_ the. longitude_diffe_ence. (L) are both sat to 0.
Finally., recalling that the scale is_ true along the central meridian of a
transverseJnercator projection, the length of. the meridional arc from the
equator to the origin must be exactly equal to the Mercator y coordinate
(Y0) measured along the central meridian fr.om, the equator to the origin

- point (step 11).

_. PAD
2. Cor=l
3. CorI_0
4.. IF.Nev=0 ThEN 7

$. Cot=. 9999
6.. C0r1=$00000" 1200/.3937
7.. R=LatOS2*PI/360
8. I_0 _"
9. 60SUB Arc_.

10. XO'_O ' ]
II. YO=Arc |
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b, H. Geodetic tO transverse mercator routine: The operator enters the target
latitude and longitude (Lat and Lon). Again, the radlan _ode.ls set andt

_: tarset latitude and longitude are converted to radian measure (steps 3 and
4). Next, subroutine Param is called to compute the ve_ious trigonometric

i_' and power te_s required by equations (3•14) and (3 15_• Subroutine Xycalc
then implements equations (_.14) and (3.15) to yield -values for the target's
tr_.nsverse Mercator X and Y coordinates. Since the "._coordinate is.computed

_i;

_. from the equator, the equator, to-origin distance mu,,_L be subtracted from the.

' equator-to-target distance (step 8) to obtain the value (Y) of the origin-to_
target Y coondinate. Finally, the scale and bias corrections are applied
(if a Nevada Mercator solution is to be obtained), and the conversion factor ._

(Ucnv) is applied to both coordinates to convert them to the selected output
units of length.

1. L=Lon0-Lon
2_ RAD
3 .. P=Lat*2*PI/360
4. L=L*2*PI/360
S.... GOSUB Par am
6. C_SUB Arc

7.. GOSUB Xycalc .........
8.. Y=Y-YO
9. Xl=(X$Cor+Corl) $Ucnv

10.. YI=(Y*Cor) *Ucnv

11. C_YrOGtmprint

C. TranSverse Mercator to geodetic routine: The operator inputs scaled
transverse Mercator coordinates in selected units (X1, Y1). These units are

converted to meters by application _f the conversion factor (Ucnv). In the
same steps, the scale and bias corrections (Cot and Corl) are alsa applied
when Nevada survey solutions are _-o be obtained• Otherwise, Cot is set to 1
and Cor l is set to 0. Flag 1 (Fig l) is also set to 1 to signal the.first
pass through the recursive solution so that an approximate starting value of
the footpoint latitude will be computed in step 10. The origin's latitude_
and Y coordinate are saved (P.cave and Arcsave) so that the same transfer

variables (P and A_c) can be used for the tar,_et coordinates. The N-S
radius of curvature of the footpoint is first approximated using the N-S
radius of curvature (R) of the origin point. The computed value of R and
the target._s Y coordinate are used-in step 10, which implements equation.
(3.34.). After the first approximation of. latitude is obtained, flag I
(F181) is reset tO 0 sc_ that step 10 will be bypassed on subsequent correcter
passes. Subroutine Arc is then called and returns a computed meridional arc _t

length for the first approximation-of footpoint latitude derived in step 10. 1
Step 11 implements equati0_ (3.3_). In this step, the returned equator-t0-

target arc length is compared with the sum of the target's true Y coordinate-
(measured from the origin point) and the equator-to-origin distance. Since
the footpoint lies on the Central meridian where the scale is true, it is
apparent that when a Correct value for _ is 0btalned, the equator-to-origin
meridiOnai distance plus the or igin-to-footpoint meridional distance must
equal the equator-to-footpoint mertdional distance• So long as this is n0t-
true, step 11 (which implements equation (3.3_)) will generate a correction
(Peer) to be _pplied to the current value of _ (P), After the correction
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factor is,applied, the program returns to step 6 to rec0mput¢ R based on the
_ 0orrected value of P. The new value of P is then Used by-subroutine Arc,

which computes a more a_curate value of the meridional arc dlstanoe to the

iii footpoint. Again, this value is used in step ll to generate a second
correction for _ (P). This prOcess is repeated until the numerator within

i, the bracketed term in equaLion (3.3S) is essentially equal to 0. When this
occurs, P will be at the value of the correct fo0tpoint latitude. Knowing

t_ the correct footp0int_Iatitude, the-various trigonometric and power terms

_/ required by equations (3.25) and (3.26) can be computed by subroutine Param.

i!'_ Subroutine Gcalc is then called to implement equations (._._5) and (3.31),1. X=(Xl/Ucnv-Corl)/Cot
2 .... Y=YI/(Uonv*Cor )

3. FIgI_'I
4. Psave=P
5. ArcsavefYO

6. Sin_SIN(P)
7 • Sin2=SineSin
8. R=Aa * ( I-E2 ) / S(_R( I-E2 * S i n2 ) ** 3

9. _.iF Flgl=O THEN 12
10. P=Y/R+PsaVe

Ii....Flgl=0
12. GOSUB Arc

13. IF ABS(Arcsave 00002THEN 17

14. Peer= (Azcsav e+Y-Ar c)/Y* (Y/R)

15. P=P+Pcor

16. GOTO 6

17. GOSUB- Par am -
18. GOSUB Gcal c

19. GOTO M_gpr int

D. Subroutine Arc: This subroutine computes the length of a meridiOnal arc
from latitude 0 to latitude p. Arc lengths are computed by use of the

I Taylor expansion given in equation (3.33) wlth the integrations being
i performed using the recursive integration formula of.equati0n (3.36). The

recursiVe calculations perfiormed in the loop between step 6 and Step 18 add

one additional.• integration term of equation (3.33) on each pass. Since the i
TaylOr series is conv_rgent_ each succeeding term in equation (3.33) is
smaller then the preeeeding term. Thus, when the currently computed term is .....
zero, the overall result is accurate to the precision limit of the system.
AS shown in step 17 below, the baseline program makes as many passes as
necessary: to reach the preCisi0n limit Of the computer.

In step 1, the term a(1- _2)is computed. Next, the first integral term,

f d}l, is evaluated from 0 to p,_simply yielding, p which iS then multi-

plied by a(l- e _) at step 2 to yield the total Contribution to the arc
length arising from the flrs.t term of _he Taylor series. Num and Den
(step 3)arc used to form the numeric fracti0ns shown as multipliers in !
each succeeding term in the. Taylor expansion. For I .= 1 (itep $), the hum- i
crater (Num) is computed to be 3 and the denominator (Den) is. computed to

be 2_pr0per numeric values for the multiplier of the seC6nd integral

3-15
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! term.. The numeric values are combined with the pr_oper e.power term. in..

_i stop 8 which, for I = 1, yields the second--_term multiplier_ 2s_ denoted

i_, Mult. Next, the integral of sin_ d_ is obtained through the use of the
. recursive relations provided, in equation.(3.36). In this case, the power ..
, (n) equals 2. Imult is used to compute the numeric multiplier Of thep_
_: integral to the right of the equal sign in equation (3._6) ,. which for

if' the n _ 2 case equals 1/2. Exp is the exponent (n - l) of the sine term

immediately after the equal sign. In this case, when n equals 2, the.
exponent of the sine is equal to 1. Inte82 is the integral in the right-
hand part of equation (3.36). Recall that On the first pass_ Inte8
was set equal to P. In solving for the second term of equation (3.33),
where n takes on the v.al.ue of 2, the sine exponent is n -. 2, reducing

_-s _ dg to nothing more than J dp, is identicalthe .integral inn-2 which

to the first integral in the equation (3.33), which was stored as Integ2
in step 4. Thus, for the case where n = 2, step 11 yields the value of ....
the rlght-hand_-integral term of equatlon (_.33)_ and the complete value
of equation (3.33) is obtained in step• 12. The contribution to the total
arc length from the second term is obtained in step 13 by multiplying

the solution of the integral of sinZp just obtained by Mult (3e_/2) and ,_
a(1- e2). The total arc length (Arc) is then obtained by adding the _
value from the first term (Arc) to the contribution from the second term

(Nuarc). Finally, at step 15, the variable Inte82 is act equal to the

value just computed for J aln2_ d_,_. I is_indexed by 1, and the value of

Nuarc iS tested. If Nuarc is found to be zero, the pr_cisi0n limit

of the system has been-reached and the program returns to the calling
point. Otherwise, the program remains in the Arc loop and solves for
the next term in equ_ti0n (3.33). It_ is important to note that,, in each

succeeding pass, Integ2 is precisely the '¢alue of the integral term on the i
right side in equation (3.3.6), meaning that only the first term and Simple

mus tnumeric mult_.pl_ers be computed. Thus, when I -: 2, step 8 yields !1

updates the value of tBe meridional arc (Arc) to include the contributions-

from the first three terms of the Taylo_ series. The subroutine continue.s ii
to compute additional terms until the value of Nuarc becomes 0, at which I_
time the progra_m r__e_turns to the calling point.

1_ Radlus=Aa e(I_E2)
. Arc=PeRadius I i

3. _Num=Den=l i l
4.. Inte82=P .... !_
5. I=1

6. Num=Nume (I'2+-1)
7.. Den=Den* (I'2)
8. Mul t_Num/Den*E2** I

9. Exp=2*I-1
i0. Imul t=(2"I-I) /(2"I)

11_ Iterm=Imul t*Integ2

12. IntegI=-SIN(P)eeExp*COS (P) /(2"I)) +Iterm

3-16



_i, 13, Nuar0=MulteInte81*Am*(1-E2)

15 Integ2sIntegl
16, I=i+i

,i. 17 IF Nuaro=0. THEN REI_RN

ii, is. o0To6
E, Subroutine Param: This subroutine computes the various trigonometric values

k required by both the forward and reverse transverse Mercator routines,.

,i AdditLonal definitions of these terms may be found in the variables list.

I,, SIn=SIN(P) .................
2. Sin2=Sin*Sin

3. CosfCOS(P)
4. Cos2_Cos*Cos

5. COs3_Cos*COs2 !

6, CoaS=Cos3*Cos2

7. CosT_CosS*Cos2

8, •L2=L*L
9. I3=L2*L

10.o IA=L2*L2
11, LS,_L4*L
12.. L6=IA*L2
13. L7=L6*L
14. , L8=L4*L4
15., .N=Aa /SQR (I-E2* Sin2)

16. R'_Aa* (1-E2) / SQ.R(1-E2*S in2 ) *'3
17 ....D=E2/(I-E2)
18. A2fD*Cos2
19. A4_'A2*A2
20,. A6"_A4*A2
21. A8_-A4*A4

22. A10-_AS*A2

23. A12=A10*A2
24. _I_'-TAN(P)
25. T2-T*T
26. T4-T2*T2 ....................................................................................................................................................................................
27. T6=T4*T2 .-

28. RETURN

F. Subroutine XycalC: This subroutine compiles all the infinite series terms
required for the computation of_transverse .Mercator • and y coordinates from
geodetic coordinates entered by the operator• Terml, Term9., and Term3-are
the multiplying terms of the third, fifth, and seventh power functions of N,

k, and _ in equation (3.14). Term4j TermS, and Term6 are the multlplyin 8
terms of the fourth, sixth, and. eighth power functions of N, k, and u in
equation.(3.15). Step 7 is a direct implementation of equation (3.14),

and Step 16 is a. direct implementation of equation (3,15)-. ........

I, _ Terml=l-T2+A2
2. Term2 =5=18,T2 +T4+14*A2-58*T2*A2+13*A4-_64*T2*A4 +4*A6_24*T2*A6
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3. Torm3a_61-479*T2+179*T4-T6+33_*A2_-3298*A2*T2+1771*A2*T4 ,
_' +715*A4-8655*T2*A4

'f' t,,. 4 Torm3h=6080*T4*A4_769*A6-10964*T2*A6+9480*'I'4*A6_412*AB_,6760*T2*A8
p!, 5. Term3 c_6912*T4*A8 +88,A10-16 32*T2*A10+-192/*T4*A10

_,, 6.. Term3 =Term3 a_Term3b+T_rm3 C
7. X=N* (L*Cos+L3*Cos3/6*Terml osS/120*Term2_L7.*Cos7/5040*Term3 )

8. T._rm4=5-T2+9*A2+4*A4
" 9. TermS_61-58*T2+T4+270*A2-330*T2*A2+44_-*A_-680*T2*A4

;; 6-600*T2*A6+88*A8-192*T2*A8
'_ 10. _Term6 a=13 85 -3111'T2 +S43 *T4-T6 +108 99"K2-32 80 2"1"2"A2

11. Term6b=9219*T4*A2+34419*A4-129087*T2*A4+49644*T4*A4
12. Term6c=S638S*A6-252084*T2*A6 +121800*T4*A6+S08 S6*A8
15. ,. Term6d=-263088*T2*Ag+is 1872*T4*Ag+24048*A10-140928*T2*A10
14. Te_m6_=94080*T4*A10+4632*A12-30528*T2*A12+25040*T4*A12

1_. Term6 =Term6 a+Term6b 6¢+Term6d+Term6 e

i 16. YffiArc in*Cos/2+L4*Sin*COs3/24*Term4

+L6 *Sin*Cos5/7_10*Term$+L8 *SIn*Co s7/40320*Te rm6 )
17. RETURN

G. Subroutine Goalc:_ This subroutine Compiles, the infinite serieL terms needed

to _Ompute the target's geodetic position from transverse Mercator

coordinates entered by the operator. Terma, Termb, and Termc are the

parentheses-enclosed t and _ values multiplying the fourth, sixth, and
eighth_power terms of equation (3.31). Termd, Termed_ and Terror are the same

types of multiplying terms found in equ_tlon (3.25). Step 13 Is an
implementation of equation (3.31) with the sub&tltutlon N/R being made for

the (i -_) terms (eq. (3.29)). Step 14 is a direct implementation of

equation. (3.2S).

I,, TermafS+3*T2 +A2-4*A4-9*A2*T2

2.......Termbl=61+90*T2+46*A2+45*T4-252*T2*A2-3*A4+100*A6-66*T2*A4

3. Termb2=-90*T4*A2+88*A8+225*T4*A4+84*T2*A6-192*T2*A8
4.. Termb _-Termb l+Termb2, i

5. Term c-13 85 +3633"T2 +409 S'T4 +1574 *T6 i
6. Termd=l+2*T2+A2
7.- Terme-5 +6*A2+28*T2-3*A4+8*T2*A2 +24*T4-4*A6 +4*T2*.A4 +14*T2*A6
8. Termf=61*662*T2+1320*T4+720*T6
9. X2_X*X

10, X4_X2*X2
11. .X6=X4*X2..
12__ xg=x4*x4
13. Lat_P+T*(-X2/(2*R'N) +X4/(24*R'N**3) *Terma

-X6/(720*R*N*_*5) *Termh+Xg/(40320*R'N**7) *Term¢)
14. Dlon'_llCos*(X/N-116*(XlN)**3*Termd+11120*(X/N)_*-*5*Terme

-Ii 5040* (X/N) **7*.Term£ ) _"

15. Lat-Lat*360/(2*PI) (
16.. Lon=LOn_-D10n*360/(2*PI)

" 17. RE_I'_RN
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Program. Operation ._

The transverse MerCatOr routines at© a subprogram, to GEOD. When GEOD is.run,.

the operator is asked, to seleOt the units and datum/tpherold refer©nee
applicable to the computations to be performed.. After th©ee s©lections have

been made, the master menu is displayed. One s©lection is for TRANSVERSE

,_ MERCATOR transformations. The operator selects the appropriate nmnerioal entry•
_ and the main program enters_the transverse Mercator routines. The operator is

' then .instructed to_make the followin$ simple selections:
A. Output device selection, which is displayed as:

SELECT OUTPUT DEVI(_

O _ CRT

1 = THERMAL PRINTER
2 = LINE PRINTER

B. Forward or reverse-transfOrmation, which is dlsplayed as.: ....................................

SEL_.CT _IODE _.

1 = GEODETIC TO TRANSVERSE MERCATOR
2. = -TRANSVERSE _MERCATOR.TO..GEODETIC

C. Transformation paxameter selection, which is displayed as:

SELECT MERCATOR PARAMETERS.

O = MANUAL ENTRY OF MERCATORPARAmeTERS
I = NEVADA EAST ZONE
2= NEVADA CENTRAL ZONE ....
3_ " NEVADA_EST ZONE

If the operator selects any of the Nevada zones, the program automatically
uses the stored transformation parameters for the zone selected and procee.ds
to step E or.F as appropriate.

D. Manual input of transformation parameters, which is displayed as:

ENTER ORIGIN LATITUDE IN D.MS

ENTER ORIGIN LC'NGITUDE IN:D.MS__

E. Geodetic tO transverse Mercator routine, for which the operator is prompted _,
as follows: '.

ENTER LATITUDE. IN D.MS.

ENTER LONGITUDE IN D.bt.S .
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The program computes, the transverse Mercator coordinates of. the point and
• prints the results on the selected output, device. Thc_-resUlts are also

displayed On the CRT, regardless of output lelecti0n. Computed values are

, displayed in the.0utput units selo0ted, and the £orm&t is aa_s_ below:
i/
i GEODETIC LATITUDE _ 39 00 00.0000

GEODETIC LONGITUDE _ ....................115. 0-0 O0.Oafl_O__ .

i_ TRANSVERSE MERCATOR]_ ffi 66S,775.57 I.S.. _EET

! TRANgVERSE_ERCATOR Y = 1,547,730._1 I.S. FEET
When. CONT is depressed, the pr_ram asks for the geodetic coordlna:_,s o,f the
next point, . "

F. Transverse Mercator to geodetic routine: Th_ bperatoz £_ p_o_p_ed to enter
transverse Mercato: x_and y values in the units previously selected.

ENTER VALUES OF TRANSVERSE MERCATORX AND Y

ENTER X IN I.S. FEET

ENTER Y IN I.S. FEET ......

The progrsm computes the geodetic coordinates of the point a,_d prints the !i
results. The results app.ear On both the CRT and on the sei_t©d output !
device unless the CRT was selected for output,_in which _a._ the results are

displayed only On the CRT,. Printout format is _s indicat_d below:

TRANSVERSE I_IERCATORX = 6_;5,775.57 l.S..FEET
TRANSVERSE MERCATORY = 1,547,730.$1 I.S. FEET

GEODETIC LATITUDE _- -39 00-00-.0000
GEODETIC LONGITUDE = 115 00 00.0000

I When C0l_rr is depressed, the program asks f0_ the transverse Mercator
coordinates of the next point.

Program Validation

The transver.se MerCator routines are validate_ by comparing r_sults_with those
in the. U.S. C0as.t. and Geodetic Survey plane coordinate intersectio_,table.s.for

the State of Nevada (ref. 4). During a valldati0n exercise, any point may be ]
selected andused in either the forward or reverse programs. Table 3.2 compares
several test coordinates from reference 4_wtth results obtained using the GMII............

algorithms. The_first line of each entry gives the geodetic latitude an&
longitude of the point along with the published USCGS transverse Mercator _,
Coordinates, The second line p._ovides the t_ansverse Mercator coordinates "

returned, for the sam_ point by the. OMD routfnes.

Fo_: table 3.3, the published transverse Mercator coordinates for the points, as __.

g__yen in table 3.2 were used as input values tO the reverse transformation
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program. The first line of. each entry shows the published Beodetic latitude and
longitude.corresponding to the input value. The second line shows the geodetic
_oordinat.s obtained by the GMD routines. The third line shows the coordinate_

; Lh_t would be obtained using t_he OMI) values obtained from the 1fOrward tr#nsfOr _-
_.u_ton for each point ...........

!_ Since entirely different algorithms were used for the forward and reverse GMI)
;_ t_ansformations, since the GMD routines include higher orde_ terms which arc

usually neglected, and since the value_ obtained by forward GMD routines _eturn
precisely the correct, geodetic coordinates when entered into the reverse
routines, it is felt tl_at the GMD transverse biercator algorithms provide
accuracies that are equivalent to those obtained from the ¢losed-for__Lambert
solutions.

f
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:i:i TABLE 3,2, .0EODETIC TO TRANS¥_,RSE MERCATORVALIDATIONS

bl .

• Sour0e Latitude Lonsitude X oooxdingte Y coordinate

USCG8 35 00 00.0000 116 00 00.0000. 375,217.01 91,241.17__
_." GMD 375 , 217,_02 91,241.16

US_Gfl . _7 O0 00.0000 115 00 00.0000 670,340.20 819,487.76
GMD 670,340..20 819,487.7.5

USCGS- 40 00 00.0000 115 30 00.0000 523,345.20+ 1,911,421.77

GMD . 523,345.20 1,911,421.78

Nevada Central Zone

USCGS 37 00 00.0000 116 00 00.0000 694,674.80r 819,647.51

G_3 694,674.80 819,647 .51

USCGS 38 00 00.0000 " 117 0000.0000 403,952.51 1,183",223.29

GMD +- 403 o952.52 1,183,223.29

USCGS 41 00 00.0000 116 30 00.0000 546,002.23 2,275,729.94

G_fl) 546,002.23. 2,275,729.93

Nevada West Zone

USCGS 38 00 00.0000 117 30 00.0000 812,158.43 1,184,868.37

GMD 812,158.44 1,184,868.28

USCGS 40 00 00.0000 118 00 00.0000 663,416.87 1,911,945.60

GMD - 663,416.87 1,911,945.60

USCGS 42 00 00.0000 118 30 00.0000 522,649.99 2,640,036.34
GMD 522,649.99 2,640,036.33
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TABLE 3.3. TRANSVERSE MERCATORTO GEODETIC VALIDATI_NS

b,

Source X coordinate Y coordinate Latitude Longitude

_i Nevada East Zone

ri

,i USCGS 375,217.01- 91,241.17 35 00-00..0000. 116 00-00.0000

i_ USCOS/GI_ 375,217.01 .... 91,241.17 35 00 00.0001 116 00 00.0001
' GMD 375,217.02 91,241.16 35 0_I 00.0000 116 00 00.0000__

USCGS 670,340.20 819,487.75 37 00 00.0000 115 00 00.0000
uSCGS/G_ 670,340.20 819,487.76 37 00 00.0001 115 00 00.0000
O_ 670,340.20 819_487_75 37 00.00.0000 115 00 00.0000

UfiCGS 523,345.20 1,911,421.77 40 O0 00.0000 115 30 00.0000
USCGS/GMD 523,345.20 1,911,421.77 39 59 59.9999 115 30 00.0000

O_ 523,345.20 1,911,421.78 40 00 00.0800 115 30 00.0000

Nevada Central Zone-
.,, J

USCGS 694,674.80 819,647.52 37 00_00_0000 116 O0 00.0000

USCGS/GMD 694,674.80 819,647.$2 37 00 00.0001 116 00 00.0000 . ]
GMD 694,6"L4.80 819,_647.51 37 O0 00.0000 115 00 00.0000

USCGS 403,952.51 1,183,223.29 38 00 00.0000 i17 00 00.0000 ....

USCGS/GMD 403,952 ._1 1,183,223.29 38.0C, 90.0000 117 O0 O0,OOn_
Gt4D_ 403,952.52 1,183,223.29 __3_8 O0 O0.Ot;O0- 117 O0 00.00 0

USCGfl 546,002.23 2,_275•,729.94- 41 00 00 . 10000 116 30 00.0000
USCGS/GMD 546,002.23 2,275,729.94 41 00 00_.0001 116 3000.0000
O_) 546,002.23 2,275,729.93 41 O0 00.0000 116 30 00.0000

Nevada West Zone

USCGS 812,158.43 1,184_868.37 38-00 00.0000 117 30 00.0000

USCGS/G_ 812,158.43 1,184,868.37 38 00 00.0009 11_ 30_O0.0001

•G_) 812,158.44 1,184,868.28 38 00 0_.0000 117 30 00.0000

UscGS 653,416.87 1,911,945.60 40 O0 00.0000 118 00 00.0000
USCGS/GMII 663,416.87 1,911,945.60 40-_0 00.0000 118-00 00.0000
OMD 663,416..87 1,911,945.60___4Q_00 00.000___118 00 00.0000

USCGS 522,649.99 2,640,036.34- 42 00 00.0000 118 30 00.0000

USCGS/GMD 522,649.99 2,640,036.34 42 O0 00.0001 118-30 00.0000- _

Old. 522,649.99 2,640,036.33 42_00 00.0000 118 30 00.0000 ,]
• , .

,!
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': CHAPTER 4

|,
i RANGE AND ,ANOL_ CALCULATIONS

!i.
El: "

This chapter provides general theory related tO the calculation of angles and
it distances between points on or off the earth's surface. To make such

), calculationS, it. is necessary to. relate real-w0rld points to correspondingpoints on one or more representative spheroid models on which a uniform gridw0rk_

i referenceof parallels andframe, meridians can form the basis for a suitable coordinate

i Geoid and Spheroid Definitions ..........

Confusion arises from time to time regarding various range and angle•
measurements made in regard .to earth surface, geoid, spheroid, and airborne or.

spaceborne points.. Some of the confusion is the result of ambiguities in the
definition of terms, even in the most authoritative references .dealing with the
subject of Keodesy. To attach specific meaning to terms used in th/s document,
a few brief definitions are p_ovided below. Additional infOrmation and
mathematical derivations can be found in references 1 tc _, but caution should

be exercised since, even though the names of certain.terms, may be the _ame., the
physical definitions may differ slightly.

Geoid

The geoid is generally Considered to be the true mean sea-level surface of_ the
earth. I_ is an equipotential surface that arises as & combination 0£

rotational and gravitational forces but neglects tidal forces caused hy the moon
or sun. Although the geoid surface closely approximates the shape of a
spheroid, irregularities of mass distribution and density within the earth cause
the 8eoid surface, t_ depart slightly from a true spheroidal shape. Departures
of up to 80 meters or more can be measured in mountainous regions and areas.of
heavy mass concentrations., but normal separations are usually much less.

Although the geoid is a physical reality,, it is not suitable for use. as a
referenc_ for locating• points on, above, or below the earth's surface. Because

Of.its irregular shape, a uniform grid system of parallels and meridians can not

be constructed on its surface. That is,. the separation between adjacent
parallels and meridians would va____cause Of undulations in the geoid surface.

Refer,ence Spheroid

The reference spheroid is a pure geometric, shape.with its center situated at a
point which is taken as approximating the Center of gravity Of the earth. The
reference spheroid is defined by the lengths of. the semimajor and semiminor axes__
Other parameters sometimes associated with the spheroid (but more Often
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associated with a selected datum) arc the position of the spheroid c©nter with .....
respect to a standard coordinate reference and the alignment of the_spheroid
with selected reference points on the surface Of the earth. (Note: As used in

this document, reference spheroid refers only to the dimensions and eccentricity
of the figure,)

!

Obviously the selection of reference spheroid parameters affects the £mount of
departure between the. apheroid and seoid surfaces. In recent years, due to ._
satellite observations, the ability to make accurate earth mea3urements has

improved considerably, and. agreement between modern spheroid models is generally
very good (within 10 to 20. meters). EffOrts toward further improvements are

probabl_ not practic_l since an exact fit to the slightly irregular geoid.
surface can never, be achieved, regardless of how accurate the measurement systems
become,

Datum,

As used in this document, datum specifies the location of the origin point.of
the reference spheroid and its alignment with. one or more specifie_ earth
reference points .......................................................

Normal Line

The normal line is defined as a l.ine constructed perpendicular to the spheroid
surface at any point,

Fundamental Plane

The fundamental plane for a spheroid point is defined as the tangent plane to
the spheroid at that point. The fundamental, plane is used to meas.ure elevation
angles for points on, above, or below the reference spheroid. In off-spheroid
cases, the fundamental plane is translated to the point of concern along a
normal line drawn from the spheroid surface through the point.

Vertical Line.

A.vertical line i_ a line. constructed perpendicular to the geoid surface at any
point. Since the geoid is an equipgtential gravitational surface_ the vertical

line also represents the direc.tion of the grav3tational vector &t the point...
where it.passes through the geoid surface. At points off the geoid surface, the
vertical line fOllows....the direction of the 8ravltational vector.

Geodetic PositiOn

The geodetic position Of a target above, below, or On the earth's surface is

defined relative to the position on the reference, spher0id at which a normal
line would pass through the target_point. Geodetic latitude is the angle
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L between the normal line and the spheroid equator. Geodetic longitude is the
_ ansle between the meridian plane passing through the spheroid point and another

_, meridian plane passing through an arbitrary zero-longitude reference point.

I

_ Separation of Geold

_,i The _eparation of Seoid at any point• is the distance between the geoid and the

i_ reference spheroid measured along a vertical line passing through the point.
The value is different for different reference spheroids and datums since the
shape of the spheroid,and the location of the origin affect the position of the_
spheroid surface with respect to the geoid surface. A negative value for the ....
separation of geoid implies that the geoid surface lies below that of the
reference, spheroid. For example, in relation to NAD-27_ the separation of geoid.
at the NASA AN/_PS-16 radar_site, ia-24.4 meters.

It _should bc noted that the sea-leVel or geoid elevation of.a point is a measure _,
of the distance along the curve followed by a gr.avitational vector going through
the point to the surface of the geoid, whereas the spheroid elevation is the
_istance between, the spheroid and the .same poin.t measured along the spheroid
normal line passing through the point. This means that spheroid elevation and
geoid elevation are actually measured along different paths. However, the
practice of obtaining spheroid elevation as_the sum of sea-level elevation and
geoid separation causes no difficulty since the error introduced by this
approximation is far less,,than the uncertainty in the posi.tion of the geoid
surface. P_blished geoid separations are.-nOrmally obtained through the use of a

spherical harmonic equation which approximates the gravitational potential field
of the earth. The constants used in these equations are obtained through
measurements at several hundred reference points. Valu_s at other points are
then computed from the approximating equation. Thus, the published values, of

geoid separation are_ probably accurate only to about 1 to 2 meters at most
locations. '............................................................................................

Geodetic Azimuth

Geodetic azimuth is a directional measurement between _wo spheroid pointa. For
example, the geodetic azimuth from pointl A to point B is defined as the angle
between the meridional.plane passing through the point A and a plane containing,
both the normal line_at A and the point B. This is also knOwn as spheroid
azimuth.

True. Az Imuth _

True azimuth is a directional measurement between two points On, above, or below _'_
the earth's surface. If these t_,o points are Cand D, the true. azimuth from C ......
to D is defined as the angle between the meridional plane passing through C and

were earth surfacepoints whose spheroid coordinates were given by A and B in .

the pre_ceding section, then the true azimuth would differ from the geodetic
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!
azimuth bee&us© the normal line drawn.£rom,B through D is_ot parallel -tO tho
nOrmal line drawn frcm_A through C.

Good,sic -

The geodosio is defined as the curve of minimum length between two points lylns
on the surface of a spheroid,

"_ Astronomical Position ....

Astronomical positions are determined by star observations. The angles are
measured with respect to-a plumb-bob vertical plaoed at the point of
Observation. Whil_ it might firs.t appear that this would alig_ the system to ._.

the. underlying (or overlying) geoid surface, the fact that the observation

points are at some specified elevation above or below sea level means that the a
direction of the gravitational vector is not influenced by the same relative
mass geometry as the equivalent 8_oid point. Therefore, the direction of the
vector will be slightly different from the _direct ion i_ takes at the point where .
it-cuts through the geoid surface ......

AstrOnomical position is also subject to change due to the precession and
nutation of the.earth's axis of, rotation. This phenomenon is caused by three
influencing factors whose net effect is that, over a 7-year period, the axis of.
rotation moves about a mean position with an amplitude from approximately 0 to
0.3 arc second.

The common definition of astronomical latitude is the inclination of the local

vertical measurement above the equatorial plane. Astr.onomical longitude is the
angle be.tween one plane containing the axis of rotation and the meridional
vertical at the observation-point., and another, containing the axis o£ rotation
and ,the Greenwich meridian_

r COnsidering the var.iatlons in the position of. the rotational axis, the.

deflection of the grav.itatlonal vector from its direction at the underlying (or.
overlying) point where it cuts through, the. geoid surface, and the fact that the
plane of the local vertical iS not exactly parallel _o the axis of ro.tatian, it
is obvious that .some ambiguity is present .in the common definition of the
astronomical coordinates. Because of this, it seems desirable to correct the.
ground-level observations to those for the geOid surface. However, this is

often impractical because_the mass distribution of underlying material is
generally not-known, and, even if known, the effect of complex mass
distributions on the gravitational vector is difficult to compute. Theref0r_,

either the corrections are neglected or standard correction factors, are applied.
Since these, corrections relate to field work which is not the subject of. this c
document, they will not be presented here. However, additional infOrmati0n (.
abont astronomical Corrections can be f0und in reference 3. Computations used
in the baseline-geodetic programs assume that the astronomical co0_dinates havo
been corrected to the proper ge0id-level values.
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!_ Astronomical A_imuth
i

)_ The astronomical azimuth from point A tO point B is dofinod as the angle betweenL

ii two pianos, ©ach of which contains tile vortical at polnt.A, but.one Of which
: contains the celestial north pole and the other of which passes through point B.

D_flection Of Ver_ical

i_ The deflection of the ve_tioal.at any point on the earth"s _urface is taken as
the angular difference, between the spheroid normal passing through the point and.
the plumb-bob vertical at the same point. It is measured _in terms of its

' meridional component and prime vertical con_ponents, which are represented by

ga - gg and _a--_g' (4.1)

respectively,, where ga _epresents astronomical latitude_ gg represents

geodetic latitude, Xa represents astronomical longitude_ .and _g represents _

geodetic longitude ....

Astronomical and geodetic azimuths can also be related by

Aa - Ag ='-(_a - _g)sin gg (4.2).

where A is the astronomical azimuth and A is the geodetic azimuth,
e g

Sea,Level Elevation

The sea-level elevation of a point is the height of the point above or below the
geoid as measured along the gravitatiOnal vector passing through the point. Sea-
level elevation is generally given with all the .various. types of coordinate
references since the position_of the.geoid with respect to .the point in question
is_the same regardless of the reference spheroid selected.

Spheroid Elevation

The spheroid elevation of a point is the height of the point above or below the i
r_fie_ence spheroid as measured along the normal line passing through the point.

Coordinate Systems

Several coordinate systems are used to perform geodetic computations in the
baseline programs_ These COordinate systems a_e exp_lained in the fOllowing
_aragraphs.
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GeOdetic ($pherold)__Coordlnatea _

!.
_. Geodetic coordinates are given in. terms Of latitude.,. _, and Iongltude, _. As .............................

_. noted above, elevatlon is generally glvcn as the hclght above mean.sea lee.el_
. (height above the geOid). Thus, in all spheroid calculations,, the sea-level
i',, elevation must be corrected by the amount of the. geoid separation,. Spheroid

Coordinates are generally given with respect to the North American Datum (/9271.
p_ When cooralinates are given with respect tO one or more datums, the datum

ii' designator •.(such as RAD-27_ or WGS_72) is generally shown alongside eachcoordinate.

b,
Astronomical Coordinates.

i Astronomical Coordinates are also given in. terms of.latltude, _,longitude,
and sea-leve_ elevation. When the possibility of confusion exists, astronomical

coordinates are labeled as astronomical.

Geocentric Coordinates

Geocentric coordinates are given in terms, of geocentric latitude, _, and
geocentric longitude, _. Geocentric altitude, is the distance from the surface
of the spheroid to the target point as measured along the geocentric position
vector. Note that, for identical pojknts, the. values of geocentric longitude and
geodetic longitude are the same .......

U_iversal Space Rectangular Coordinates

In tracking system geOdetics, the. universal space rectangular coordinate (E-F-G)
frame of reference is a right-handed Carteslan System whose Origin is at the
Center Of the reference spheroid and whose G axis is coincident with the mean

axis of rotation of the reference spheroid, The E axis passes through the
Greenwich meridian, and the E and E axes define the equatorial plane. _e ]
location Of the origln point for the E-F-G system varies from one datum to
another, In this document, the.WGS-72 datum is taken as the standard, and the I

centers ofall other datums are given in terms of AE, AF,. and AG i
measurements from the. WGS-72 origin. Since most tracking system _eodetics are

referenced to a fixed earth, it. is easy to overlook the. fact thlt_ tl_ E-F_G
coordinates apply to a xotating system whose rotation _a_e..i_...th_ sama as that
of the earth.

LOcal Ehst-Rorth-Vertical .Coordinates

The-local east-north-vertical coordinate (X-Y-Z) frame of reference_is a right- /
handed Cartesian system that is centered at any pointon, ah0ve.,.or below the .
reference spheroid. The X Coordinate radiates in the local, east dlrection
measured at the point, the Y coordinate radiates in the .north diree_i0n along
the meridi0nal plane passing through the point, and the Z coordinate radiate_s_s
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' upward along the outward normal that• passes through the point, The X and Y
, coordlnates lie in the fund_mental.+planeopassln8 through the origin point.

I Local Space Ro_ctangular Coordinates

The local space rectangular coordinate (E'-Fw-G e) frame of reference is a right-
p_ handed Cartesian system whose origin is centered at any point_on, above, Or
;< below the reference spheroid. The V,, F', and G' coordinates are parallel to

if" but apatially_offs__0t f_(_m...t.h_. E, F, and G coordinates described earlier.•
AE-AF-AG Coordlna tes_

The AE-AF-AG c0_rdinates are .used to describe the positions of E'-F.t-G _-

origin points in the E-F-G •system. They are used for translational purposeS_

Local Range-Azlmuth-E1evation Coordinates _ !

The local range-azimuth=elevation (R-A-E) coordinate frame is the spherical
equlvalont of the X-Y-Z Cartesian coordinate system. In this system, azimuth, ..................
A, is the angular component of the target positl_n lying in the fundamental
plane and measured .clockwise from true north.. Elevation, E, is the inclination

of the.target above the fundamental.plane. Range, R, is the slant range of the
target from the coordinate origin. For radar and optical trackers, the Origin ....
of both the R_A-E and X-Y-Z coordinate systems, is taken as the inters=ction.of
the horizOntal and vertical (H-V) axes of the antenna pedes.tal, Note that the
angle measurements made by a tracking system must be-corrected by a minor
rotation.,from plumb-b_b vertical into. alignment with the fundamental plane and
spheroid normal. This is accomplished as part o£ the.-mislevel cOrrections.

Subroutines Common to Range and Angle Programs

The range, and angle calc.ulati0ns used in the baseline softwar_ are based on
spheroidal relationships-and on a simple applicatlon of vector and matrix

mathematics. The more common spheroidal relationships were given without proof
in equations (1.3) to (1.8)in chapter i. In the baseline software, standard
subroutines are often shared by many of the subprograms. Each of these common
subroutine, algorithms is provided below and is not repeated in later sections.
Also note that the terms U, W, and H used in the subroutines which fo].low are

generalized transfer variables. Indivldual Calling programs will set specific
program variables, .let us say Lot, Lon, and Eiev, equal to U, W, and H _rior to
calling a •speciflc subroutine, r

A. Subroutlne. Ncalc: Subroutine Ncalc returns a value Of the cost'west radius i _
of curvature at a specified-latitude on the reference spheroid. This
subxoutine was al.so presented in Chapter 2,.but it is repeated here for

Convenience. Ncalc i_ a direct implementati01_ of equation (1,6).
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1. S/nu_SlN (U)
I 2.._S in2 u=S Inu*S inu
i

._. 3. N=AalSQR(I_E2*SIn2u)
_' 4. RETURN
[:

In this. subroutine, U represents the geodetic latitude of the •point in the

_ selected spheroid/datum system:, Aa and E2 are the length Of the semimajor
_,. axis. and. the square Of the eccentrlclty of-.the reference spheroid, and N_/s_ ..............

l,i_i the east-weSt radius of Curvature .....
!

: B, Subr.outine Rcalc:. Subroutine Rcalc returna-a value of the north-south
radius of curvature at a specified latitude on the reference sphe_roid.
Rcalc is a dlrect implementation of equation (i,$).

i I. SinuffiSIN(U)

2, ,Sin2u_'Sinu*S inu

3. R--Aa*(I-E2 )_(l:E_*__u) **I.5
4. RETURN . .

In this subxoutine the variables U, Aa, and E2 are the same as described

p_eviously....The...._xiable-R r.epresen_s the north-south radius of :,_urva ture.

C. Subrout_ine Efgcalc:. Subroutine. Efgcalc returns the E-F-G coordinates of a
point .above,.h.elow, or on the reference spheroid.

I.,. Sinu=SIN (.U)-.

2.. _Cosu=COS (U)

3, Sinw_SIN (W)
4. Cosw'-COS(W)

• 5., E=(N+H)*COsu*Cosw

6. F=- (N+H) *CoSu*S inw
7.. G=(N*(1-E2)+lI)*Sinu

8. RETV_

In this subroutine, U is.geodetic latitude, and W is geodetic longitude. E,
l_,. and G are the. Cartesian coordinates Of the point given in the unlversal

space rectanguiar cOordinate system. N is the east-west radius of curvat.uro
and H is.the height of the target above the reference spheroid. H isI
measured along the normal llne at the. surface point defined by U and W.

D. Subroutine Xyzrae: Subroutine Xyzrae Converts radar-centered east, north,
and vertical (X-Y-Z) Cartesian coordinates into radar-centered range,
azimuth, and elevation s_pherical Coordinates. The computational algOrithm
is_t_

I., .IIyp=SQR(X**2+Y**2) _.
2. Rng=SQR (llyp** 2+Z*.2 )
3. Absl=ABS(X/Hyp)
4. .IF.Absl).707 THEN 7
5. _Az=ASN(Absl )

7. AzfACS(HyplRng)
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",'i S.. Abs2=ABS(ZlRng)
_' 9 ....IF, Aba2>.707,THEN 12
_, I0. .EI=AgN(Ab82)
_. 11. GOTO 14

I', 12,. EI=ACS(Hyp/Rn8)
13. Quadx=34

_"'_ 14. IF _>_0 THEN (_,adx=].2r

15. Quady=23
_, 16.. _F Y>ffi0 THEN Ouady=_41.._

_/_, 17, .Ouadt=Quadx+Quady

,_ 18, ]:F Quadt-_53 THEN Quad=l
ii 19. I'F Quadt=35 THEN Quad=220..IF Quadt=$7 THEN Quad=3
_' 21.. IF Quadtffi7$ THEN Quad=4
' 22. IF Ouad=2 THEN Az_-180-M

23.. _ IF Quad=3 THEN Az=180 h�24. IF Ouad=4 THEN Az=360-Az

25,..IF-Z<O THEN EI=-E1 .,.
26. RETURN

As used in this subroutine, Hyp is the hypotenuse of a trla_gle .formed: _y .....

the target_s X and Y coordinates lying in the fundamental plane passing
through the tracking site. Rng is the spherical radius from the o_igin to ..
the target point. It is found as the hypotenuse of the triang!e formed by
Hyp and the Z caoxdlnate. Absl is the absolute value of X/Hyp and Abs2 is ....
the absolute value of Z/Rng.. Absl and Abs2 are used to determine the most
accurate computational method for determining the raw azimuth and elevation•
angles. When Absl is greate_ than 0.707, the slope of the arccoSine
function is steeper and this yields more accuracy in the calculation of the
azimuthangle. Conve._sely, when Absl is less than 0.707, the slope of the
arcsine function is steeper and greater accuracy is obtained by using• the
arcsine solution. A similar comparison is made using Abs2 to optimize the

accuracy Of the elevation angle compu,tation.

Program steps 13 tO 25 are a GMD-derived method for resolving the azimuth
quadrant., if the value, of X is p_sltive,. Quadx is given, the value 12,
meaning that X lies in either quadrant 1 or quadrant 2. If X is less than
0, Quadx is given the value 34, indicating that X lies in .either quadrant 3
or quadrant 4. Similarly, if the value of.Y is positive, Quady is given the
value 41, indicating that Y lies in either quadrant 4 or quadrant 1. If Y
is negative, Quady is given the value of 23, indicating that Y lies in either
quadrant 2 -or quadrant 3. The sum of (luadx and Quady is Quadt (.step 17).
The value of Quadt can.0nly be 53, 35., 57, or 75. If the value is 53, then

Quad i.s set equal to 1, indicating that the point lies in the. first
quadrant. Similarly, if Quadt equals 35, 57, or 75, then the point lies in
quadrant 2, 3, or 4, respectively, and Quad is set equal to 2, 3, or 4 as
the case may be. When the point lies on One of the coordinate axes, the
coordinate value is assumed tO be positive. However, the-subroutine
provides an iden.tical solution for on-axis points if they are assumed to be
negative.
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_! Obviously, for quadrant 1, the azimuth value_ is equal tO Az. For the secondquadrant the azimuth.value is equal to 180- Az, for the-third it is equal
* to 180 �Az_and for the._fourth it is equal to 360 - Az.

In step 25, the sign attached to the elevation angle is determined by noting
I that El iS negative when Z is negative and positive when 2_is po_sitiv0.-

_' E. Subroutixto RaexyT.: Subroutine Raoxyz converts tatg©t position in spheriOal
range, azimuth, and elevation coordinates into Cartesian east-n0rth-vertical

h (X-Y-Z) form .....

il_ 1. Cosel=COS (El)

2. -X=Rng*SIN(Az) *COse.l

3. Y=Rng*COS(Az)*Cosel.

i 4. Z=RngsSIN(EI)
5. RETURN

i In this subroutine° El is target elevation, Az is a_imuth, and Rng is range.

As in the.previous subroutine, Az is measured clockwise from true north. E1
is 0 when horizontal (lying in the fundamental plane), +90 degrees at. the

zenith point, and -90 degrees when polnting vertically downwaxd ....

F, Subroutine Xyzefg: Subroutine Xyzefg is designed to rotate local Cartesian
coordinates between an X'-Y-Z (east-nor£h-vertical) reference and a local

system aligned with the earth-centered E-F-G (universal space rectangular).
coordinate_frame. When the subroutine is entered, if _iatflg equals 1, the
subroutine .will ro_t_ X-Y-Z coordinates into E-F._G aligument. If Matflg
equals O, the subroutine _Ii rotate local E-I_-G-aligned Cartesian-
coordinates to X-Y-Z alignment. The values stored in arrays A and B are the
d_.rection cosines for standard three-dimensional forward (X to E) and

reverse. (E to X) rotations. Mathematically, the forward transformation may
be expressed as:

E sin W -cos W. sin. U cos W cos U ] [ X

F = cos W sin W sin U -sin W cos U ] I Y
G 0 Cos U/ sin U Z

or in program variables ................................................................

E(2) | = A(2,1) A(2,2) A(2°3) X(2)

E(3) J A(3,1) A(3,2) A(3.,3) X(3) .

_%imila_ly, the reveille transformation is expressed mathematically as ,'
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ilL"

"_ Y '_ -COs W sin..U sin W sin-U -. cos U F

_:;i Z cos WcOs. U -sin W 00a U sin U G
/i/ *................................................................

.....

Or in prosram variables

p_
Pl

t'_ x(1)....] B(1,1) B(_I,Z) B(1.,3)_] _(1).
[i X(2) ] -_ B(2,1) B(2,2) B(2,3) E(2)Jr xO) j B(s,I) B(3,2) B(_,_) E(3) .,

!

The suhroutine algorithm J.s:

1 ...... Sinu=SIN(U)
2... Cosu_COS (U)

3. Sinw=SIN(W). |
4. Cosw=COS(W) I5. B(1,1) =A(1,1)._Sinw
6. B(2,1) _A(1_2) =-COsw*Sinu
7.. B(3, I) =A(l,3)=Cosw*Cos u
8. B(1,2) _-A(2,1)-Cosw

9. -B(2,2)=A(2,2) =Sinw*S inu

I0.. B(3,2) =A (2,3)=--Sinw*CosU

11. B(1,3) _A(3,1)--0

12. B(2,3) _A(3,2) =Cosu
13. B(3,3)=A(3,3)=Sinu

14. IF Matflg=l I_IEN MAT E=A*X
15. IF.Matflg=0 T_EN MAT XeB*E
16..• Matflge0
17. RETURN

In this subrOutine, U is geodetic latitude _nd W is geodetic, longitude. The 'i
A array devel0ps, the forward direction cosines used for the X-Y-Z to E-F-G ,_

rotation, and the B array develops the inverse direc.tio_ cosines for the _'_
E-F-G to X-Y-Z ratation. The symbol E in steps 14 and 15 represents a three-
dimensional array whose elements E(1), E(2), and E(3) contain the current li

values of E, F, and G. The symbOl X in the same program steps represents a
three-dimensional array whose elements X(1), X(2), and X(3) contain the _i

current values Of_ X) Y, and Z. The BASIC command Db%TE=A*X causes the 9 lelements of matrix A to multiply the 3 elements of..matrix array X..
Similarly, RAT X_B*E causes the 9 elerentS of .matrix array B to multiply the
three elements of matrix array E.
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Prqgram to Calculate Forward and Reverse Azimuth and Elevation
, Angles and True Slant Range

_ The forward and reverse azimuth and elevation angles and th_ slant rang_bctween
_: any two points (for example, A and B) are Calculated by first converting thei

position coOrdinates of each point from.geOdetic-form to the corresponding earth--
P_ centered E'F-G elements, Using_simple. vecto_ subtraction, the difference v_ctor

_, (AE-AF-AG) is obtained. At the point A, the elements of the difference

' vector ar_ first rotated into lOcal east, north, and vortical alignment and then
converted to. spherical range, azimuth, and elevation form. Thi_ yields the

• forward azimuth and elevation angles along with the true slant range.

,- Similarly, at the point B, the negative values Of the e/ement$ of the difference.•
vector are first rOtated into local east, north, and ver.tlcal alignment and-then

converted to spherical form to yield values for the rev.erse azimuth and

I elevation parameters. This sequence is shown graphically in figure 4.1.

qOn-spheroid. G
oint 2

Vcr tical

qor th

t

( AE-AF-AC_)..-x

Vertical Ndrtli

/ x
Cn-s t

/ point 1 ...........

/ (E-F-G),I

/

F_ I ic center ,

of earth spheroid

E/

Figure 4.1 ..............

Variable Names

Name Description,

Altl Spheroid elevatiOn of p¢int I

Alt2 Spheroid elevation of point 2

Azl ForWard azimuth in degrees
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/ i
t. t

_r AZ2' Reverse azimuth in def_rees

I;, De, Dr, Dg Elements of difference ve.ctor _.

i E Designator Of three_dlmension_l E(*) array in

_ BASIC array multiplications (different from

_ symbol E shown .below)

:t E, F, G Earth-centered universal rectangular coordinate
'_ system element s

E(1), E(2), E(3) Elements of_three-dimenst_onal E(*) array

i EOI, FOI, GO1 Earth-centered E, F,. and.G_coordlnates of .point I

E02, FO2, 602 Earth-cen_tered E, F, and G coordinates of point 2

Ell Forward elevation in degrees

El2 Reverse elevation in degrees

Elevl Sea-leveI elevation of Roint 1 _,,

Elev2 ........ Sea-level elevation of point 2

Geosepl .......................Geoid separation at point I

Geosep2 GeOid.sep.aration. at pOint 2

Latl Latitude of .point 1 in degrees

Lat2 Latitude of point 2 in degrees

Lonl Longitude of point 1 in degrees

Lon2 LOngitude of point 2 in degrees..

blatf]g Flag to select• E)-F.'-G ) to X-Y-Z Or X-Y-Z to
E'-F'-G f rotation in Xyzef8 subroutine

Rng Slant _ange in selected units

X , DesignatOr of three-_dimensional X(*) array in,
BASIC array multiplications (different from
X symbol shown.below)

X, Y, Z Elements Of. east, north, vertical coordinate
frame .of. reference ._

X(1), ]_(2), X(3) _lements Of three-dim_nslonal X(e) array
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Computational A18orithms

The. essential algorithms for the forward and reverse azimuth and slant range .....
calcul_tions arc _!_on _n the foll0wing_paragraphs.

!i. A. Ozentry. subr0utlne: This subroutine allows-the Operator to enter 8_o_detic
coordlnates, soa.-lo_,elelevation, and geold separation for the two

coordinate points. The inp.ut varlables for point i ar_ Latl, Lonl, Elevl,

P' and Geosepl The input .variables for point 2 are Lat2, Lon2, Elev2, and

_' Oeosep2... The subroutine is called by the main subprogram Gz and returns to

_' Gz af.ter the appropriate entries have been made-.
r B. Gz subroutine: The Gz Subroutine_computes the slant range and the forward
' and reverse azimuth, and elevation angles between point.1 and point 2. Upon

i entering Gz, the program calls Osel which requests the operator aelection, o_an output device., When the output device selection has been made, the

i program returns to Gz. Next, Gz calls Ozentry which requests operator
inputs for poln.ts I and 2, These. Consist of the latltlde,_ longitude, sea-
level elevation,, and geoid separation for each_point. At steps 5 and 6, the
program converts each of-the sea-level-(ge0id) eZe.vations to spheroid

elevations,by addin 8 the geoid separation for each point to its sea-level
ele.vation. In the same steps, the spheroid elevations in the selected input ....
units are converted to meters by applying the appropriate conversion factor i
(Ucnv). The spheroid elevations (in meters) are labeled Altl and Aft2.

Next,. the program assigns the transfer variables U, W, and H the values of
Latl, Lonl, and Al.tl and callS subroutine Ncalc which computes the east-west

radius of curvature (N) at point 1. The same values of N, U, W, and H ara

then used by subroutine Efgcalc to compute the E-F-G.coordinates of point i,
which are stored as E01, F01, end O01. The same procedure is then followed

f.or point 2. U, W} and H are assigned values of Lat2, Lon2, and Aft2, and

the value of N at polnt.2 is computed for use. in subroutine Efgcalc.

Efscalc returns the E-F-O coordinates of point 2, which are stored as E02,
F02, and G02. The AE_AF-AG elements from point 1 to point 2-ar_
computed in steps 23 to 25._ At step 26, Matflg is set equal tO 2, end the

three E-F-G elements and the-latitude and longitude of point 1 are used by
subroutine Xyzefg to compute the coordinates Of point 2 in a Cartesian E-N-V

frame of reference centered at point 1. At step 37, the. Cartesian E-N-V
elements of the point 2 position vectcr are Converted to R-A-E form. The

computed Az and El values are .stored as Azl and Eli. Next, the negative

values of the AE-AF-AG v-ector are assigned to the MAT E array (E(1),

E(2), and E(3)) and U and W are assigned the val_tes Of latitude and

longitude for point 2. _{atfl8 is set equal to 2 for a reverse (E-F-G to

X-Y-Z) rotation, and subroutine.Xyzef.g_computes the E-N-V Caxteslan elements

Of the vector from po.int 2 to point.1. These values,_hich are returned as
b

X(1), X(2), and X(3), ar_ assigned to variables X, Y, and Z, the transfer
t

variables for the Xyzrae subroutine.. Xyzr_e computes the azimuth and
elevation of._point 1.from point 2 alOng with the range-between the two
points, The reverse azimuth and elevation values are stored as. Az2 and El2 ......

The range between the points is stored as RI2. SubroUtine GZ then calls

Gzprlnt, _hlch Converts the range value from meters back tO the.operator_-

Selected unitS,_the_u_prints the forward and reverse azimuths and elevations
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:, and the ranse between the two points. After the,p_intOut has been
completed, the proBram r_urns, to Gzont tO awa_it new Operator entries for

! point 1-and point 2

,i I. Gz: I
'+ 2. OOSt_ Os©l

3. Gzent: I
4, OOSUB Gzcntry

_:! 5. Altl=(Elevl+Geosepl)/Ucnv -
l_'' 6, . A1 t2=(El_v2+Goosep2)/Uonv

'7. +U=Latl

:: 8. W=Lonl
9. -_H=A1 tl

, 10.+ GOSUB N_atc
11. + GOSUB Efscalc

i 12. E01=E.

13. FO1 _-F
14 .. GOI_G
15... U=Lat2 --.
16. W=Lon2
17. H=AIt2
18._ OOSUB Ncalc

19. GOSUB-Efgcalc
20, E02=E
21. F02=F.
22. GO2_G
23. De=E02-E01
24. Df=F02-F01

25. Dg=GO2-G01 -
26+.. Matflg=2
27. E(1) =De

28. E(2) =Dr

29. E(3) =e 8
30. U=Latl .........
31. _=Lonl
32. _f,AT+X=Z]_.

33,. GOSUB Xyzef$ ....
34. X=X(1)
35. Y"X (2)
36. Z=X(3)

37. GOSUB. Xy.zrae
38.. Azl_Az
39. Ell=E1.
40. U=Lat2 .....
41.,_ W=Lon2
42. E(:I) _--Do
43. E(2)_-bf

44** R (3) '_'D8
45. ItlATX=ZER

46. Matfls=2
47.. GOSUB Xyz.ef8
48. X_X (1)



49..- Y'X(2)
:: 50. Z=X(3)

51 ._GOfl_ Xyzrae
52. R12=Rn8,/

_, 53. Az2=Az
_ 54.. EI2=EI
I.' ._5. GOSUB Gzp_int

• 56. PAUSE
'_ 57. GOTO Gz©nt

l'/, C. Subroutine Gzprint: This subroutine prints both the input coordinates and

, the c_mputed values for. slant range and forward and_reverse azimuth andelevation.
i

i, Program OperatiOn,

'Me slant range and-fo_ard and reverse azimuth and elevation algorithms are a.subroutine to GEOD. When GEOD is run, after the operator selects the desired
units and spheroid/datum reference, the master menu is-displayed. One selection
on the menu is TRUE GEODETIC FWD AND REV _tZ AND EL AND SPHEROID DIST. The

operator selects the appropriate numerical entry and the_main program enters: the
distance and angle calculation subroutines.

After entry into the subroutine, the operator is asked to make the following
simple entries:

A. Output device selection, which is displayed as: .......

SELECT OUTPUT DEVICE

: 0 =CRT

1 = THERSL%L PRINTER

2 = LINE PRINTER

B. Parameter entries, which are displayed sequentially as:

ENTER GEODETIC LATITUDE OF POINT 1 IN D.MS

ENTER GEODETIC LONGIIUDE OF POINT i-IN D.Mfi

ENTER SEA-LEVEL ELEVATION OF POINT 1 II% (.selected units)

ENTER.,GEOID SEPARATION AT POINT 1 iN (selected units)

ENTER GEODETIC. LATIYdDE OF POINT 2 IN D.MS

ENTER GEODETIC LONGITUDE OF POINT 2 IN D.MS

ENTER SEA-LEVEL ELEVATION OF POINT 2 IN (selected units)

ENTER GEOID SEPARATION AT POINT 2 IN (selec,ted unitS)
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If the operator does not know the value of gooid separation at either_point,

.... a value Of 0 should be entered for both scold separations. This will cause
! the calculations to be performed as if the sea-level elevation at both•

points were the same as the spheroid elevation. FOr most applioationae the
error will be insignificant (probably less than the least significant digit
displayed). However, it should be noted that the value of geoid separation
must be known and entered for both points, or zero must be entered.for both

h

_! points. If .the true value for geoid separation is entered for one point for

i_i_ which it .is known and zero is entered for the other point because the true

value is--nnknown__t.here will be a measurable error_in_all the calculations.

The program then performs the computatians and, when completed, displays the.
results in the following typical form. Angle data are provided as degree--

i minute-second, degree, and radish val_es.
POINT 1 GEODETIC'LAT'= 35 00 00.0000. (35_000000000) (0.610865238)
POINT 1 {_EODETIC LON _ 118 00 00,0000- (118.000000000) (2.059488517)
POINT 1 SEA LEV ELEV = 500.000 _TERS

POINTI GE01D SEP-- = ......25.000 METERS

POINT 2 GEODETIC LAT = 36 00 00.0000 (36.000000000) (0..628318531)

POINT 2_GEODETIC LON = 119 00 00.0000- (119.000000000) (2.076941810) _

POINT 2 SEA LEV ELEV = 250.000-_TERS

POINT 2 GEOID_SEP -- 15.000 METERS

FORWARD AZ (1 TO 2) = 321 00 47,7143 (321,013253980) (5+602738225)
FORWARD EL (1 TO 2) = _ 0 44 55,2557 ( -0,748682135) (-0,013066968)

REVERSE AZ (2 TO-l) =-140.25 57,0875 (140,432524308) ( 2,451009926)

REVERSE .EL (2__0_iI__ = - 0 32 26,8292, (-0,540785893) (-0,009438494)

SLANT "RANOE = 143326,771 METERS

When ceNT is pressed, the program returns to the input steps and prompts the

I operator for entry of the second sot of Coordinate points.. In cases where
one point remains the same but the other point varies, the operator need
only repeatedly press COI_'as the redundant point inputs are requested.
This will cause the program to use the values last entered for those points.
Once the output device selection has been made, it will remain in effect so
long as the program remains in the range and angle calculation subroutine.

ProLram Validation

Two methods are available to validate the range and angle calculations. The
first uses data_points which allow a trivla_ solution that can be checked On a
desk calculator_using simple trigonometry._ Two_such points can be located On
the equator but at different longitudes so that the result is simply the chord "-
Of a known circle_ Or, the points may be at the same longitude but with One / !
point at the equator and the Other at the north pole, forming a triangle whose
base-is the semimajor axis Of the reference spheroid and whose leg is the

!

semimin0r axis Of the reference spheroid. The second validation technique
Compares Calculated.angle data with da_ta__ublished in USCGS Or DMAC documents.
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:r This can provide a rough Check, but whett a difference is found, there is no wayb

tO know whcthe_ the error is in the published data, tha calculated data, or
r both. In addition, the published USCGS and DMAC values are not generally given _

t tO the precision that is needed tO accurately compare results. Therefore, the
i_. trivial geometrlc solutions are considered to be a more accurate validation

method slnae, even though a trivial soluti0n iS used for comparison purposes,
i_ the values obtained from the program are obtained using all the computational
i, algorithms used for the more complex so lutlons.

IJi_ In this document, the first method is employe_, and the results are shown in

Ii table 4_i. The first comparison is. made using two points situated on_the_
equator but.with a difference in longitude of 180 degrees, the second
Comparison is made.using two points si.tuated on the equator but with a

i dlfferen_e in longitude of 90 degrees, and th_ third comparison is made Using
the first point on the.. equator at the GreenwiCh.me_idian and th_ second point
at the north pole. All. Calculations were made using the Clarke spheroid and a
spheroid elevation Of 0.

!
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ill TABLE 4.1. IRIGONO_TRIC VALIDATION OF_GLE DATA__
r
ii...... ....... .....

_, Parameter GMD basellne routines Trigono___q_____L_n___

Pt 1 latitude 0.00 00.0000 0 00 00.0000

Pt 1 longitude 0 00 00.0000 - 0 00 00.0000
_ Pt 2Aatitude 0 00-.00.0000 0 00 00.0000

' Pt 2 longitude 180 00 00.0000 180.00 00.0000
FOrward azimuth IndCterminant Indeterminant -
Reverse azimuth Indeterminant Indeterminant

, Forward elevation- --90.000000000 - 90.000000000 ......
Reverse elevatlon - 90.000000000 - 90.000000000

Slant range 12,756,412.800 m 12,756,412.800 m

Pt 1 latltude 0 O0 00.0000 0 O0 00.0000 ---

Pt 1 longitude 0 00 00.0000 0 00 00.0000
Pt 2 latitude 0 00 00.0000 0 00 00.0000

Pt 2 longitude 90 00 00.O000 9_0 00 00.0000

Forwand azimath 90 00 00.0000 90 00 00.0000
Reverse azimuth 270 00 00.0000- 270 00 00.0000- -

Forward elevation - 45.O00000000 - 4S.000000000

Reverse elevation - 45.000000000 - 45.000000000

Slant range 9,020.,145_94 m .... 9,020,145.994.Jn

Pt 1 latitude 0 O0 00.0000 0 O0 00.0000

Pt 1 longitude 0 00 00.O000 0 00 00.0000
Pt 2 latitude 90 00 00.0000 90 00 00.0000

Pt 2 longitude 0 00 00.0000 0 00 00.0000

Forward azimuth 0.000000000 0.000000000
Reverse azimuth 180.000000000 180.000000000
Forward elevation - 45.097283309 - 45.097283309
Reverse elevation " 44.9027-16691 -44.9027-16691

Slant range 9,0_04,869.488 m 9,_04,869.488 m

The above results show agreement, to at least nine decimal places in angle and
at least three decimal places in range (the accuracy limit of tha desk computer

system)..• It should be noted that the program resulta are all based On Closed-
form solutions whose accuracies are affected only by the precision limit of the

computational equipment ....... ]

i
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i: Program tO Calculate Spheroid. Forward and Reverse Azimuth
and Spheroid Distance

|, = ....

,I

To determine the course and distance between two points A and B, s pilot drawS_

_, a straight line bo.tween the two. points On a Lambert oonformal aeronautical
_ Chart. Neglecting the effects of wind, the magnetic heading to be flown from A
,_ to B is simply the true course (measured as the angle between the course line
_/ and the meridian passing through the starting point A) plus or minus the

i_. magnetic var latlon (plus for west variation and minus for east variation).. In

flJ.ght, as the airplane .proceeds along this path, the magnetic heading must be
slowly adjusted• because the angle between the course line and each succeeding
meridian en route is slightly different due to meridian convergence. If_ther
earth were a true sphere, the path taken•between the two points would be the arc
of.a great circle representing the shortest distance between the two points.
In the real world, because of the flattening of the spheroid, the Lambert
course does not represent the shortes.t distance between the two points.
However, because the flattening is very sli&ht, the difference in distance
between the geodesic and the Lambert course is also very slight for normal _
flight legs, even those of reasonably Ions distance_(lOOO to 2000 nautical
miles).

SUbroutine Lx in the baseline program is used to compute the Lambert forward

and reye_'se azimuth angles and the spheroid distance be_tween any two chart ]
points. In this subroutine the geodetic coordinates (latitude and longitude)
Of two map points are entered. The program then computes the forward and

reverse azimuth angles using the Lambert conformal transformation, which is
mathematically COnS!_rained. to preserve angle measurements.

Distance calculations made On a Lambert map obviously require some adjustment
since the scale is true only on the two standard•parallels. A method has been

devised to. obtain accurate distance measurements by computing a cor_reetion ]
factor that can be applied to the Lambert hypotenuse (which represents the _:
length of the projection of an on-spheroid line drawn between the two points).
This method is used in subroutine Lx. First,. to reduce initial, scale error, t

the north and south standarc_ parallels used in the transformation are selected j
so as to pass directly through the two points between which the measurements
are to be made, Next., to correct for scale error due to magnification between _

the two standard parallels, the program-computes .the Lambert distance between
the northern and southern parallels and compares this distance with the spheroid

distance between the two parallels as Computed from the meridional are. I
algorithm used in the MercatOr subprogram. The ratio of these two distances
provides a factor _hat is used to cOrrec_ the Lambert distance measurement, t

Results of the on-spheroid distance computations have been verified t_ be well
within I meter of accuracy for distances up to I000 nautical miles or more.

o

a.

Varleble Names

Name Descrlption

Aa Length of semima_or axis Of reference spheroid
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AzI_ Forward spheroidal azimuth in degrees

Az2. Reverse spheroid azimuth in degrees

Azflg Flag Indicatlng azlmuth value as indetcrminant

'_ Bb._ Length of sem iminor axis, of reference .spheroid ,.

Dlon Difference in longitude_between point 1 and point,.2 ...............

• E2 Square. of ellipticlty value for re f.erence spheroid

Ee Ellipticity value for reference spheroid.

Factor Factor ,used to correct Lambert distance computation

LII Transfer variable used to send latitude of north

standard parallel to meridional arc subroutine

LI2 Transfer variable used to send ,longitude of south
standazd parallel to meridional arc subroutine.
and to return .computed arc length

Latl Latitude of point 1 in degr_ees

Lat2 ...... Latitude Of point 2 in degrees

Lm Flag sent to subprOgram Mercator tO indicate • that
only meridional arc_computation is to be performed

Lonl Longitude. of point I in degrees

Lon2 Longitude of point 2 in degr__ees

Lx Lambert_ X value returned from Lamxy subroutine

Ly Lambert.Y .value returned from Lamxy subroutine .........................

Lycheck Check value used in. the,development of the Lambert
correction factor

Nlat Latitude of _north standard parallel in de&tees

01at Latitude of .Lambert origin,point___point 1) in degrees.

Olon Longitude of Lambert origin point (point 2) in degrees

Rng. Lambert distance computed in Xy_zrae subroutine
1

Latitude of_sm_h standard parallel in degrees ....... ISlat

I
X Lambert X i
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_ Y Lambart I

b, Zlat Target latitude (point, 2.) in degre0s

I!_ Zion Target longitude (poin£.2) in degrees

i"
} '

COmp_uta t iona 1 A1 g or i thins.

_.' A. C,zentry subroutine.: This subroutine, allows the operator to enter geodetic .
it:!-,- - coordinates of the first and seCond,.sphcrold l_olnts. The same subroutine

I_ is used to enter, data for the angle and slant range program previouslydescribed., When used for entry of on-spheroid polnts,, a mode flag causes.
_. the requests for sea_level.elevatlon and 8e01d separation to be-bypassed.

t ........

B. Lz subroutine: The Lz.subroutlne, computes the spheroid distance and the ........Lambert_forward and. reverse azimuth angles be twe.en point 1 and point 2.

Certain housekeepingfunctions and sim Ie degree  onversion calls are m
omitted. l
The Osel subroutine (step 2) is entered only_on initial.entry into the Lz
subroutine and allows the operator .to select, the output device (CRT, i
thermal printer., or_ line printer), Gzentry is-called at step 3 to accept
the lati.tudes and longitudes of points 1 and 2, after which the main

'j

computations are performed, i

The Lz subroutine uses the g_neralized Lambert algorithms to comp.ute forward

and revers_ spheroid azimuth angles and Lambert distances. It is important
to recall that for this calculation, Lambert parameters are selected such
that the nOrth standard parallel passes through the northernmost point and
the southern standard parallel passes.through the southernmost point, To
do this, the conventional. Lambeet origin point is assigned the coordinates
of. point I and. the conventlonal, Lambert target point is assigned .the
coordinates of point 2 (steps 4 and 5) in Order to first compute the
forward azimuth from point 1 to point 2. A check is made at step 8 to
determine whether both points lie at the same .latitude. In such case,, the

transformation reduces to that of a single standard parallel passing
through both, points. Since, when.this happens, the course runs very near
the standard parallel where the distance is true, it suffices tO simply set-

the correction factor to 1 and bypass the merldional arc calculations which
d_termine the true arc distance between the standard parallels. If the two-.

points are-not at the same latitude., flag Lm is set to.1 and the Mercator
subprogram is called. Flag Lm causes the program to bypass all but the
merl.dlonal arc calcul_tions in the Mercator. subprogram, thus eliminating
the need for a separate merldional arc. subroutine, In the calllng, argumenL
(step 1O.)., the dummy variables LII and LI2 pass_,the latitude values of
point 1 and point 2-to the Mercator subprogram, The meridional arc length _ ,'
between north-s0uth points whose latitudes a_e the same as those of points
1 and 2 but whose longitudes are Zero is. then computed. The arc length
Obtained .represents the separation Of the parallels passing through points

1 and 2, and it. is returned as dummy variable L12. Parameter YCheck is
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b then set equal to the. absolute value, of the distance separation between the ..............

: standard paralleLs_passing throush the two points (step. 12),
i'

_. Steps 15 to 18 are used to recognize the indeterminant situati6n wher_both
_. points lie at the pole. In. such casc,_ ranse is sot to 0 and Azfls is sc_ ..... '

to 1_ to cause the word INDETERMINANT to print Out for the azimuth value ...............
P_ Step 19 rec0snizes the conditionwhcre 1 point lies at the.pole and. the

i!! other lies at any point, on the .spheroid. In .this. case. One azimuth angle, is, always 0 degrees and the Other is always 1S0-degrees. The losic in steps
, 20-to 24 .determines which of. the two azimuth Values is 0 and which is 180

degrees. In this. case, it is also. obvious that the spheroid distance
between the two points is exactly the same..as the me.ridional arc distance,
and Rng is set equal to the absolute value returned from. the meridional_arc
calculation (st._ps 12 and 25),

Next, the. Lamb subroutine is called. This subroutine causes the..program to.
enter the Lambert routines previously described. These. routines initialize
using the point 1 latitude as the nor.th _standard parallel, the point 2.
latitude as the. south standard parallel, the coordinate.s of point 1 as the.
origin, and the coor.dinates of point 2 as the target. Lamb returns val_es
Lx and Ly, representing.the Lambert coordinates o£ point 2 with point 1. as
the. ori$in. The.values of the two p0sition_coordinates of point 2 with
respect to point .1..are stored as X and Y, _

In step 30, the difference in longitude between the two poin.t_ is set to 0-
(Dlon=O.)_ and Lamxy is called_. This bypasses the Lambert initialization
routines which are calculs_ted when Lamb is called, but using the.same .
initialization pa_ameters_ computes the Lambert distance between two

comeridional points lying. On each of the two standard parallels. This
value is stored as Lycheck at step 32. At step 33, a factor iS developed
which repr.esents the ratio Of.. the true meridional, arc distance between the
two, parallels containing points. 1 and 2, and the Lambert distance.between
the same two parallels. Sir.co the Lambert value Obtained by this p_ocedur.e
represents the lensth Of the Lambert projection of a meridional arc between
the two parallels, the same. scale• factor correction should be reasonably
accurate for-correcting the. total distance, between two non-comeridiOnal

poin.ts lying on the same two parallels, i!

At step 36, Subroutine_Xyzrae is called tO compute the Lambert_distance
between the two points. Since only X and Y have been assigned, values .

(steps 28 and 29), the .subroutine returns only Az.(azimuth) and Rn$
(range), In a Lambert transformation, angles are preserved. This insures
that the correct azimuth is obtained. Rng,. in this case, is the Lambert

hypotenuse between the two points, The value of the forward azimuth is i
stored as Azl (step 37) ............. J

To find the reverse on-spheroid azimuth, the-point 1 coordinates are '
ieassigned as target coordinates Zlat and Zlon,. and the. point 2 coordinates

are assigned as :the Orlgln coordinates Olat and Olon (steps 38 to 43).
Subroutlne Laml is again celled to initialize the Lambert transformation
using the. same_ t_vo standard parallels, but with point 2 now servln8 as the
orlgin point. The returned Lambert X and Y values are again resolved into
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_ polar form i_ subroutine Xyzrae which returns the value Of the _ov©rse
(point 2 tO point i) azimuth. This value is stored u-Az2 in stop 48._

t

_ Finally, at step_49, the Lambert distance between the two points (Rng)_ is
:: e0rreet_d by the value of Factor (Rnf,_Rns*Faetor) tO Obtain the appr0ximate-_

spheroid distance between the two pk, ints. After the range adjustment, the
it" prasr_ calls the printout subrautinQ Gzprint, which displays or prints the

re_tlts.
|%

_ T_e presram sequence used to accomplish these calculations is'
l!_

I 1. Lz: !2 .... GOSUB Osel

3. _GOSUB Gzentry
4. Lll=Olat_LatL
5. Olon_Lonl
6. Ll2=Zlat=Lat2
7._ ZIon=-:LOn2
8. IF-Olat=.Zlat THEN 13.

9 ....l,m=l
I0.. CALL MercstOr(Aa_B11,Ee,E2,Ucnv,Lll,L12)

II. Lm_0

12.. Ycheek_ABS(L12)

13. Nlat_L_X(Olat,Zlat)

14. Slat-_MIN(Olat,Zlat)

15._ IF (Nlat=90) AND (S1at=90)_T_EN.Azflg=l

16. IF (Nlat=90) AND (Slat=90) THEN Rng=0

17. IF-(Nlat_-90) AND (Slat=90) THEN GOTO Gzprint
18. IF (Latl=90) OR (Lat2_90) THEN 21 -

19. 002"0.27

20. Azl=Azlz-0

21....Az2=180
22. IF Lat2=90 THEN 26....................

23. Azl=18O
24 .... Az2=Az2r=0

25. Y=Rng=Ycheck

26. GOTO Gzprint
27. GOSUB La_l
28. X_.Lx.

29. Y=Ly
30. Dlon=0

31. GOSUB Lamxy ..
32. Lye he ck=Ly
33. IF Ly)I000 THEN 36.

34.. IF FRACT(Lycheck*-lOO0)=0 THEN Yeheek-=Ly
35. ,Factor=Yche.Ck/Lyeheck
36. GOSUB Xyzrae
37. Azl -=Az
38. Lat=Olat .-
39. Lon=Olon

40.. Olat_Zlat
41. O1on=Zlon
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42. Zla t-_Lat
43. Zlon_Lon

44, _OSUB Laml
45. X_Lx

,!' 46. Y_LF

:' 47. GOSUB Xy_rae
i_, 48. Az2_Az

49.. Rng=Rng*Fact oF

: 50 O0_-G _pr int ..................

I' C.. Subroutine Laml: Sub,routlne Laml performs the Lambert initialization basedon the values, for the north and south standard parallels (Nlat and Slat)
and the.values of the origin latitude and 10ngitude (Olat and Olon). After

the In£tlalizatlon the program-proceeds into Lamxy which computes the

i Lambert X and Y values fox the points previously entered by the operator.
A Complete description of the,.Lambert routines is provided in chapter 2 of /

i this document, {
D. Subroutine Lamxy: Subroutine Lamxy computes, the Lambert X and Y

coordinates (Lx and Ly) using the initialization values from subroutine
Laml and the target'S 8eode.tic cOordinates (Zlat and Zlon). Subroutine ................

Lamxy. is fully described in chapter 2 of this doc.mnent.

E. Subroutine Xyz.rae:. Subroutine Xyz_ae converts•local east, north, and
vertical Cartesian coordinates into.spherlcal range, azimuth, and elevation

form. For on-spheroid calculations, the elevation computations are not

used. Subroutine Xyzrae is given earlier in this chapter (Subroutines

Common to Range and Angle Progrants).

Program Operation

The spheroid angle, and distance algo_rlthms are a.subroutine of GEOD. When GEOD
is run, the operator is prompte_ to select the. units and the datum/spheroid
rofcrence applicabl_ to the computations to be. performed, After these
selections have been made, the master menu selection is displayed. One
se_lection is SPHEROID FWD AND REV AZIMUTH AND SPHEROID DISTANCE. The operator

selects the appropriate numerical entry and the main program enters the
spheroid._angle and. distance subroutines.

After entry into the subroutine, the operator is asked to make the following
simple entries:

A. Output deVice sel eCt ion,. which is display.ed as:

SELECT OUTPUT DEVICE

0=CRT

1 - TII_ PRINTER,
2 = LINE PRINTER
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B. Parameter entries, which are displayed sequentially as:

ENTER GEODETIC LATITUDE OF POINT 1 IN. D.MS

ENTER GEODETIC LONGI'_DE O_POINT 1 IN D.MS

ENTER GEODETIC LATI_IJDE OF IKIINT 2 IN D.MS

ENTER GEODETIC LONGITUDE. OF POINT I IN D.MS

, _"no program then enters-lts cOmpUtational mode and, when completed, displays

tho following"

POINT 1 GEODETIC LATITUDE = 35 00 00.0000 (35.000000000) (..0.6-10865238)

POINT 1 GEODETIC LONGITUDE = 118 00.00.0000 (118.000000000) (2.059488517)

POINT 2 GEODETIC, LATITUDE = 36 00 00,0000 (36.000000000) (0.628318531)
POINT 2 GEODETIC LONGITUDE = 119 00 00.0000 (119.000000000) (2.076941810)

FORWARD AZIMUTH (1 TO 2) _ 321 00 51.9530 (321.014431394) (5.602758774)

REVERSE AZIMUTH (2 TO 1) = 140 26 01.3948 (140.433720789) (2.451030809)

SPHEROID DISTANCE = 143320.67 _TERS

In this display, angles are first shown in degree, minute, second, and decimal
second format_ followed by the-same value in degrees and in zadians, Distance

units are as selected by the operator upon initial entry into GEOD.

When CONT is pressed, the program returns to the entry point and requests

coordinates for the n0xt two points, If either point is the same as for the

previous run, the operator need only press COkrr and the coordinates for the
previous run will be used for that particular entry p_rameter.

Program. Validation .....

The spheroidal azimuth and distance' routines compute the angles and distance
measurements that would he obtained by a pilot or flight planner when he draws
a straight course llne between two points on a Lambert conformal chart. On a
Lambert conformal chart, the angles provide what woul_ be a great circle route,
if the earth were perfectly round. Because the earth is a spheroid and not a
sp_hern, the chart course apprQr_mates a great,circle path.

Validation of the program is first accomplished by computing angles and

distances between a selected origin and a pattern Of points surrounding the
origin. The paints are kept sufficiently close to the origin that the spheroid
angles and distances returned by this routine are approximately equal to the
true,.azlmuth and slant range distances _omputed by the previo.us program. For

this compariSon the Clarke/NAD references were_K_e.d_ and the results are shown
in table 4.2.
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CHAPTER 5

DETERMINATION OF GEODETIC COORDINATE_ FOR OFF-SPIIEROID POINTS
,!,

II,
iI ,

This chapter describes four methods for the determining the geodetic la.titud_,
is 1ongltude, and alti_tude of a target from kn0wn universal space rectangular

I': Coordinates. These methods are: Ii

_: 1. the Lagrange (Hedgley) closed-form method "11
p,

2. the_Purcell and C0wan appr.oximation method

3. the Bowring approxi_mation method I

4, the GMD (James) closed-form method 1

The Lagrange multiplier method is a closed-form solution which provides results
whose accuracies are valid to the precision limit of the computational system.
While in theory a closed-form solution should be best for use in a baseline

system, the solution .requires finding the roots of a quartic equation, and,.
with normal computational systems, this degrades the accuracy because of the
need tO work with fourth-order terms. The algorithms used for solving the

quartlc equation are time consuming, but the solution concept is
straightforward and easily i_mplementc_..

The Purcell and Cowan approximation m_,thod offers sufficient speed fOr real-

time applications. It is not_quite as accurate_in the latitude determination

as the Other solution methods, but the altitude calculations are extremely !
accurate. For real-time pro8rams, the Purcell and C0wan approximation usual.ly.

achieves results that ar_-a_ 80od as or better than the least-signi___nt-bit

precision of the tracking systems°

The Bowring approximation method also has sufficient speed for real-time
applications. In the Bowring method a rough approximation of altitude is

computed and then refined, Even if the first approxims_tion is in error by a

significant amount, the_equations will still re_urn a surprisingly ac.curate
solution. Generally,_a .one-pasts solution prOvides sufficient accuracy for most

tracking applicationS. However, the Bowring method has the advantage that, by

using the output of one solution as input for a succeeding pass, the _rrors can

be reduced to any speclfied limit in reasonable compu_tatiQnal time. !I

The GMD method was developed during an attempt ta find _ closed-'form solution
with speed e0mparable to that Of the approximation methods. The technique is
straightforward and does not suffer, from singularities that are sometimes•
present in Other •solutiOns. Unlike the Lagrange method, which solves a quart it
equation for the -valise of the Lagrange multiplier, the GMD solutlon solves
directly for the Coordinates of the target point. UnfortunateLy,. the method
als0 requires a quartic soiutiou, which is time ¢0nsumlng. At altitudes under
i_000_000 meters, accuracies are approximately the same as for the La_range
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solution. However, at very _Igh altitudes (up to 1,000_000,0.00 meters),_t_e ....
i. Gb_} solution seems tJ3 yield lightly b_otter accuracies .....

:!
, A comparison of computational time requirements for the fou_ methods, shows the
/ Purcell and Cowan solution to be the fastest with the Bowfins method taking
'"' about twice as long, the GMD method taking about three times as long,__and th_

La_range method taking about four times as long.. ..............................................................................................................................................................

I' The Lagrange Multiplier Method

i The application of the Lagrange multiplier.method to the conversion ofuniversal space rectangular coordinates to goodeticvalues was proposed by

D. R. Hedgley, _r. (ref. $). The.uniqueness of the Hedgley method lies in the i

• fact that the solution yields the coordinates of the surface.point for which
the square-of the surf_ace-to_targc_t distance is at a minimum value. By

minimizing the square of the distance instead of the distance, itself, a
variables separable condition exists which permits_a direct application of the
Lag_ange aolat ion.

P(x, y, z) G ff_/P°(x°'

z o )Yo,

zl)

i

Figure $.1.

Consider, a target situated at a point Pc that lies off the. earth spheroid, as
shown in f_gure $.1. Let P be .any point on the surface of the spheroid and. let

P_ be the spheroid point whose normal line passes directly through the target
point. Using universal si_ace reCtangular-coordinates, the distance h between _"
the surface pOint and the target point i_s given• by ,"

h '- [(E o - E) a + (F o _ F) a + (G o - G) a] z/a (5.1)

and

!
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_ _ (Eo - E) 2 + (F o - F) a �(GO - G) z; (5.2)

': Obviously, the-values Of both h and h z reach miniml_s-when E_ Ei, F = I:"I, and .-
i'i G = Ox, and it will suffice to minimize h I instead of h if this will simplify ......................

i the computations. This simplification becomes.apparent when the partial
dorlvatlves of-h i are taken with respect to E, F, a_nd G, y_Idin$

¢

'_ ahl ahi
+: aE--'T,m 2(Eo " E), _ -- 2(F o - F) and Oh---L2=-2(0o - G) (5.3.)
t';' ....................... ' aG .

where the partial of h2.-with respect__to E is a function of E alone., the
partial of h g with respect to F is a function of F alone, and the partial of
h2 with respect to G is a function of G alone.

The equation for the spheroid in universal space rectangular coOrdinates is

F _, G2+ =-I (5.4)

which, by rearranging terms,__can be written In_.a zero form as

E_ F _ G z

a'-T+ ;T + _'T- 1-_"0. (5.5)

Since equation (5.5) is equal to 0, it will. not change:the value of equ.a.t_.0.n .........................................
(5.2) if it is rewritten as

[ E2 F_ G:_ 1]H2 _- (E o - E)" + (F o - F) 2 + (G o - G) _' - a _" + _ + _'T - • (5.6)

In equation (5.6), the value of hz, a fUnction of E,_ F, and G, has been ........................
replaced by tiZ, a function of E, F; G, end a, _vhcre.a is known as the
Lagrange mu]tiplie£. Th_ added right_-hand members of equation (5.6) arc
nothing more than equation (5.5) multiplied by u. Since equation (5.5) is
equal to O_ the product of a and equation (5.5) must also be equal to O.

q_c_efore, Hz is numerically equal• to h 2 for alI values of E, Fo G, and a ........... 1

To obtain the maxima and minima of H2, the four partial derivatives are set
equal to. zero.

-- 2aE
0Hi = 2(E o -,E) -- = 0 (5,7)0E a _

= 2al ++
an-'--_22(F o - F) - -- = 0 (5 8)OF -a 1 '

i.

OHi 2aG
aT = 203o- G) - b---T = o (5.9) '

!
Oil! E i F i e I "-- = -_ 1 = 0 (5.10)

Oa a2 a2 bZ I
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Tho means by which th© Lagrans©.multiplier method yields constrained maxima and
minima, is readily apparent from equations (5.7) to (5.10). When the partial

derivatives of II_ with respect to each o_ the three Coor.dlnate variables E,

F, and G are set equal t_ 0, the values obtained will bO those for zero_.sldpe
points., olther maxima or minima. At thn same time,..the derivative .of ID v_ith

_' respect to the Lagrange multiplier a yields nothing less than the zeros.form

i, equation for the spheroid. Because-of. this, the only values of E, F, and G for
Which equations (5.7) to (5.10) can possibly be satisfied are those for the set

of coordlnat_ points lying._n the surface Cf the spheroid.
K

t' By intuition one can deduce that there are only two pOints at which the maximum-
, or minimum dlstaRce.between the surface of a spheroid and an off-spherold point

I will occur. One is the sur£ace p01nt whOs_ outward normal passes through th_target point. The other is the surface+_point that is most distant+ from the

target,polnt. Howeve.r,.because _, and-not h, was used in the applicatlon of

the Lagrange multiplier method, two addltianal points are introduced, both of

i which are imaginary. Thus, to determine.the surface geodetic Coordinates of the

target, it is necessary to find the real values for E, F, and G for which h or

h_ is minimized (eq. (5.l) or ($.2)).
This is a¢comp.lished by solving equations (5.7) to (5.9) for E, F, and G, •

respectively. The values obtained are then substituted into equation (5.10),

yielding

(Eo)Z (Fo)2 (Go)Z
.... + I = 0. (5.11)............

)2 .... (1+a'(l + a_ a' _)' b. (I + _)' !

Equation (5.11) may be rearranged into

a4 + (2a _ +.2b2)a_ + (a4 �b4 -E_a2- F_a 2 -Go2b__ + 4a263)a _

+-.(2aZb4 + 2a4b 2_- 2Eoa2bZ - 2Fo2a2b* - 2G_aZb2)a

+ (a4b 4 - E_aab 4 - Fo2a2b4 - GoZa4bz) = 0 (5.12)

which is in the form of a quartic equation

Aa 4 �Bas + Ca_ + Da = 0. (5.13)

In the baseline prOgram, the qusrtiC equati0n is solved by the method of

Descartes, which is provided in detail in the appendix.

Of the two real. roots obtained by the+quartic root solut.(on, the one that

yields, values of E, I_.,and G which minimize the value of h in equation (5.1)

will be the proper root, and the values of E, F, and G thus obtained will be

the univecsa_ space rectangular coordinates of the surface point directly _"
beneath _.he target. (

To abtaln the geodetlc c_ordinates, of the-point, it is first necessary tO
cOave_t the _-_=G coordlnates into geocentric Spherical coordlnatcs and thence



_. into geodetic coordinates. The gooce_utric.__ooordinatns_of thd polnt can be
, obtain©d from ........................

L R = (E_ + Fz + Or) I/_ ($.14)
i., and.......

,, (El +.Fi)_/2.
_, e, -_arccos ' R_ (5.15)

li° where R_ is the length of the geocentric position vector from the origin to
the point Pl, and _1 is the. geocentric latitude of the point Px.

Using equation (1.8), geocentric latitude _x may be converted to geodetic
latitude Px by the relation

Pl =arctan [tan _x/(! - e_)]. (5.16)

The geodetic longitude is obviously the.same as the geocentric longitude of the
target point and can be found ,from

), =arctan (FI/E I) = arctan-(Fo/Eo). (5.17)

Knowing the geodetic latitude and longitude of the. surface point as well as.
the target Ex, Fx, .and Gx coordinates, the value of h can be obtained from

Eo a Ih _ - (5.18) '
cOS p_ Sin _ (I - s_sin_pl)I/_ '

!
F o a

cOS P'z sin X (I - sZslnZpl)x/_ ' (5.19)

or

Go. a(1- eZ).

h _- sin Pl (1 - _2s-_--_n_pl)I/_" (S.20)

Equations ($.18) to ($•.20) are used instead of equation (5.1) to obtoin the

final value for h because a solution with equation (5.1) would involve finding

the square root of.a very large termwhich would reduce the accuracy of the-
result.
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Vat iabl_ Names

_. Name D,_scrlptlon, -

_ A2. aS term in equation (5.12)

!' A2b2 a2b 2 term in equation (5.12)

'_ A264 aZb_-te_m in eq_tion (5.12) ..........................................
v 4

_I:/_ A462 a4b 2 term_n_equatlon (5.12)

r Aa Length of semimajor axis of reference spheroid

i Alpha Lagrange mul.tipl ier

Aft Altitude of target above sea level ....An No_malized length of semimajor axis (An = I)

B2 b _ term in equation (5.12)

B4. b 4 term in equation (5.12)

Bb Length of semiminor._xis of .reference spheroid

Bn lqormalized length of semiminor axis (Bb/Aa)

Coslat COsine of target geodetic latitude

E1 E coordinate in input units

E2n En_

En Normalized E coordinate

F1. F coordinate in input units

F2n Fn 2

Fn Normalized F coordinate

G1 G,coOrdinate in input units

G2n Gn _.

Geoidsep Separation of seold in meters- _'

Geosep Separation of g e old in selected units

Gn Normalized G c0ord_inate
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I. [,at Geodetic latitude Of target On sp_horoid

i, Lon .... Longitude Of target 0n.spheroid

li_ Sinlat Sine of target geodetic latitude ..............................................................

i:" Sin21at Sinlat a

P_ Terma _lultiplier off_fourth-power term _in equation (5.12)

I_i" Termb Multiplier_ of third-power term in equation (5,12).

Termc ...... Multiplier.of second-power term in equation (5.12)

i Termcl Constant port4.on of .Termc

l Termc2 Variable portion of Termc..'rermd ............ Multiplier. of first-power term in equation (5.12)

Termdl Constant portion of Ter_nd

Termd2 Vat Lab le pot tion ,of Termd

Terme Last .b,racke ted. term in equa tion.._(5_,12)

Termel COnstant. p_tion of Terme.

Terme2 Variable p.prtion of Terme

Ucnv COnversion factor for selected units ....

Computational Algorithms

The essential algorithms used_ for the Lagrange multiplier de.termination of
geodetic latitude, longitude,, and alti.tude from known universal space
rectangu_lar Coordinates are as follows:..

A. Lagrange subroutine: The Lagrange subroutine computes the Lagrange terms
needed by the quartic solution subprogram and, upon receipt of the real
rOOtS frOm. the quartic solution, Computes geodetic latitude, longitude, a_d
altiSude,

Upon initial, entry into the Lagrange subroutine, the program calls

subroutine Osel (step 2) which allows the operator to select the Output
device to be used thr0ughout .the Computations. The program then calls

subroutine Efgentry (step 6) to permit the operator_to enter the E-F-G
coordinates Of the target point. These coordinates are entered, in the
units selected by the opcrat0r at program initialization. The input
cdordinates are assigned simple. Variable .names of.E1, F1 and GI. in steps
7 to 9 the program nOrmalizes each Of the input Coordinates through
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division by tho appropriate metric oonvorsion val.ue (Ucn.v) and the length

_ of the- semlmaj or axis (An).. In steps 12 to 17 the prog_ram forms the
multipliers of the power terms in.oquati0ns (5.12) and (5,13). Note that

;_ Terma through Terme correspond tO the.parameters ,_ through E in equation ....

Ii (5.13), At step 18 the pr0gram calls subroutine QuartlC which implements

_:._ the DesCartes technique tO sOLve for the roots of a generalized quartlc

equation. A full description of subroutine Quartic is provided in the
,, appendix. When Quartlc is called from subroutlno Lagrange,. a mode flag

i;! causes the subroutine logic to test for the root that•provldes the minimumvalue for h. The selected root is stored as simple variable Alpha. Steps

I_ 20 through 22 implement equations (5.7) through ($,9), which have beenrearranged ta solve for the parameters E, F, and G respectively. Note that

the computed coordinates are restored from normalized to engineering unit
values in the same steps• At step 18, the Efgtolat subroutine, is called to

i compute the surface point latitude coordinate from_the values of E, F, and
G. At step 2_, the longitude of the surface point (which is identical to
the lOng!.tude Of the target point) is computed by simple trigonometry. In
step 29, the computed latitude and longitude valnes of the surface, point

are used tO determine the correct value for h (Alt). Step 29 is a direct
implementation___, equation (_.18). i

I • Lagrange" I
2......GOSUB Osel

3• PRINT PAGE

4. GOSUB Lagrangeterm
5. Lagrangel :I.

6• GOSUB Efgentry._
7. En=E1/Ucnv/Aa
8. Fn=F1/Ucnv/Aa
9• Gn=Gl/Ucnv/Aa

I0• E2n-En*En _.
11. F2n=Fn*Fn

12. Termc2=A2n*(E2n+F2n)+B2n*G2n

13, Termd2=2*A2bZ*(E2n+F2n+G2n)
14 • Tcrme2 =A2b4* (E2n+F2n) +A4b2*G2n

15... Termc=Termc l-Termc2._

16. Termd=Termd1-Termd2
17. Terme=TermeI-Terme2
18 • GOSUB Qua r t i c.+.

19. Coordinates :!

20.. E=En*Aa/(l+Alph)
21. F=Fn*Aa/(l+A1yh)
22• G=Gn*Aa/(l+Alph/B2n)
23• GOSUB Efgtolat
24. Lon=I80-ATN (l_n/En)
25. Sinlat=SIN(Lat)
26 Sxn2 !st_Sinlat*Sinla t

27.. Cos lat=COS(Lat)
28. Coslon=COS (Lon)

29. Alt=EnSAa/(Cos 1at*Cos 1on)_Aa/SQR(I-F.2*Sin2 tat)

30_ GOSUB Coordpr int

31. OOTO Lagrangel
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B. Lasrangetorm subroutine: The Lasrangeterm.subroutine c¢,mputes_the
spheroid/datum depc.ndent terma A through E in..quartio equation (5,13),
These terms remain the same for all solutions using the same spheroid/datum

reference, and therefore, the calculations are made only upon initial entry
,/ into the Lagrange subroutine. Note that spheroid length parameters (a and

b) are normalized to prevent a real precision overflow that would otherwise
Occur in the fourth-power terms.

I"i I_ An_A2n=A4n=l

2. Bn=Bb /Aa
3. B2n=BnSBn
4_ --B4n=B2nSB2n

5 .. - A2b2_B2n _
6. A4b2=B2n
7. A2b4eB4n
8. Terma=l

10. Term cl=A4n+B4n+4*A2b 2

11. Termdl=2* (A264+A462)
12. Terme l=A4n*B4n

C. Efgentry subroutine.: The Efgentry subroutine is used to receive operator
inputs of the E, F, and G. coordinates of the target point. Entries are
made in units selec_ted, by the operator at program initialization and stored
as El, F1, and GI.

D. O.uartlc subroutine: The Quartic subroutine is a generalized subroUtine
that will find the roots of any quartfc equation. Input to the subroutine
are the values for A, B, C, D, and E as indicated in equation (5.13). In
the Lagrange program, these terms are labeled as Terma, Termb, Termc,

Terrad, and Terme. When the entry to Ouartlc is made from the Lagrange
program, the tw0 real roots, are tested tO select the one which provides the
minimu_ value for h (Aft). This root is stored as simple variable Alpha
for subsequent use in the Lagrange subroutine. A full descrlptJon of
subroutine Quartic i_ provided in the appendix.

E. F,fgtolat subroutine: The Efgtolat subroutine is a generalized algorlthm
that converts E-F-G Coordinate values into geodetic latitude. At s_.ep 1
the value Of Ez. +-F a is computed. In step 2 the length of the
geocentric radius vector R1 is computed as the squ_are root of |
E2-+ F _ + G_. Geocentric latitude (LatgeOcen) is computed at step 3 1
through simple trigonometry. In step 4, this value is converted to
geodetic for_ by a direct implementation of equation (1.8).

I. Eta rml =E*E+F.*F

2. RI=SOR(Eterm+G*G) ._"

3. Latgeocen=ACS(SOR(Eterml)/R1) ,'

4. Lat=ATN(TAN(Latseocen)/(l-E2)
. I_RN



Pzoszam Operation

The Lagrange multiplier solution is a subroutine Of GEOD. When GEOD is run,
the operator is asked to select the input/0utput units and spheroid/datum
zeference to be used in. the computations,: The program then_enters the La_range
subroutine, reqttests the_output selections,_ and initializes all the
spheroid/datum dependent terms of the• quaztic equation. After the
initialization haf,_he_en complete d , the program prompts the operator• .to make the
following entries ....

A. Parameter entries. Parameter _tries are sequentially displayed as:

ENTER GEOCENTRIC E VALUE IN (selected units) ........

ENTER GEOCENTRIC F VALUE IN (selected units)

ENTER GEOCENTRIC,G VALUE IN (selected units)

ENTEP, GEOID SEPARATION IN (selected units) J
The program then f_rms the quartic equation and enters subroutine Quartic 1
which returns the proper root of the quartic equation from which the
geocentr_ic, coordinates of. the surface point may-be determined. The
geocentric co.ordinates are converted to. geodetic coordinates, and the
altitude of the target above sea level is computed.

B. Program out.put. The entered val.ues and computed values are displayed as:

DATU_I: NORTH AMERICAI_ (NAD) EAR_L_MODEL: CLARY_

GEOCENTRIC 'E' COORDINATE -" -2459439.14 I_.TERS_
GEOCENTRIC_ 'F' COORDINATE = -4625532.17 _IETERS

GEOCENTRIC *G' COORDINATE = 3.643414.76 METERS

GEODETIC LATITUDE = 35 00 00.0000 (35.00000000) (0.610865237)
GEODETIC LONGITUDEs= 118 00 00.0000 (118.00000000) (2.059488518)

SPHEROID ELEVATION = .10000.00 METERS
GEOID ELEVATION = 10023_0 _iETERS

The latitude and longitude are given in degrees,, minutes, seconds, and decimal
• seconds, followed by the same values in degrees and zadians. The output units

(METERS shown) are those selected by the operator for input and output.

, !

Program Validation

The Lagrange multiplier solutions pravlde coordinate and altitude infOrmatiOn _

for Off-spheroid targets. While. the calculation Of the universal space ,,
, rectangular Coordinators for any off-spheroid target point is mathematically |

simple, the reverse calculation is cOnsiderably, more difficult. Because the
forward calCulationS involve only simple trigOnometric relationships,, extremely

ac__F_G coordinates can be Obtained for any off_pheroid target point.
]
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},'

Those. values can then be used in the reverse solution, which employs a
,,i' completely different mathematical concept. If the values returned from the _i
j_

_ reverse solution match the starting ,ralues •used in the forward solution, then a
_,_ successful validation, ia_btained,

,_ For the validation oases shown in table 5.1, target altitudes of O, i000,

ii 10,000., 100,000, 1,000,000, and 10,000,000 meters were used. 35 00 00.0000 N -' an_ 118 00 00,0000 W were used as the geodetic coordinates of the test point.

I' As shown in the table, the _everse calculations returned position coordinatesthat. were always within.one-half centimeter of the. starting point until the
altitude exceeded 1,000,000 meters. Above this altitude the p_ecision of the.

12-digit computational system, be.gins to limit the accuracy that can be

attained, l_owever, it is important to rememh6r that the Lagrange method yields
a closed-form solution whose accuracy is limited only by the precision of the
computational system.

i!
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i TABLE 5.1..LAGRANGE SOLUTION VALIDATIONS

Paramete_ Actual value Computed value

Fox E _ -2455593.45 m, F _ -4618299.59 m, and G _ 3637679.00 m

i; Geodetic latitude 35 00 00.0000 34 59 59.9999
Longitude . 118 00 00.0000 118 00 00.00Q0.
Altitude 0.00 m _.00 m ......

For E =-2455978.02 m, F = -4619022.86 m, and G = 3638252.58 m

Geodetic latitude 35 O0 00.0000 35.00 00,0001_

Longitude 118 O0 00.0000 118 O0 O0,OOQO
Altitude ...... 1000.00 m 1000.00 m

For E = -2459439.14 m, F = -4625532.27 m, and G =.3643414..75 m

Geodetic latitude 35 O0 00.0000 34 59 59.9998
Long£tude 118.O0 00.0000 118 00 00.0002
Altitude 10000.00 m 10000.00 m

For E = -2494050.31 me F-= -4_90626.42 me and G = 3695036.64 m

Geodetic latitude 35 00 00.0000 35 00 00.0000
Longitude 118 00 00.0000 118 00 00.0001
Altitude .. 100000.00 m . 100000.00 m

For E _- -2840162 , 04 m, F -_ -5341567.92 m, and O _- 4211255.44 m

Geodetic latitude 35 00 00.0000 34 59 59.9999
Longitude. 118 O0 00.0000. 117. 59 59,9999
Altitude. 1000000.00 m 1000000.00 m.

For E -_ -6301279.35 m, F = -11850982.85 m, and G = 9373443.36 m

Geodetic latitude 35 00 00_0000 -- 35 00 00.0005

Longitude 118 O0 00.0000 117 59 59,9999 _,
Altitude 10000000.00 m 10000000.03 m "

r-
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_le Purcell.....and_...........Cowan Approximation MethOd

, Th© method of Purcell and Cowan calculates geodetic latitude and longitude .from
,!. universal space reCtangular,cOordinates by the use Of ntunero_s small angle
Ii approximations that o_hance computational speed but still retain a reasonable

p:, degree of computa_tfonal....aacuracy.,

Figure 5,2 represents the first quadrant_ of a meridian ellipse from an oblate
h

earth of eccentrici.ty, e. The position of the target is denoted by the point

" P, which is at an altitude h above the surface of the reference spheroid..

The target_.s geodetic latitude is denoted by _, its geocentric latitude is
denoted by _a, and the geocentric .latitude of the surface point whose outward
normal passes through the target is denoted by _z. The magnitude of the
geocentric position vector of the target is denoted by.R, the geocentric

radius of the spheroid at the point T is denoted b.y Rs, the geocentric radius
of the sphe£old at the point Q is denoted by Rz, and the geodetic radius at

the surface normal point is denoted by N. The symbol a denotes the length Of j
the semimaj.or axis of. the spheroid, b denotes the length of the semiminor
axis Of the spheroid, d denotes the. distance, along the X axis from the origin
to the intersection of the,normal line, and c denotes the distance meas.ured

along the normal line from the point of i_tersection with the X axis to its
intersection with the su.r£ace of the spheroid. The difference between geo-

detic and geocentric l_titude is denoted-by a at the point Q, by a_ at the
point T, and by _ at the point P.........................

i

fercncc

spheroid

b

COocentrlc y _
Centcr. of
reference /

sphe _t

t. 1 J!

East-west. a ...........
center Of. i

curvature

for point Q ,,

Figure 5.2.
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It ha_ been. shown that, the. rela.tiOnbetween geodetic and 8eoeentria latitude
ii_ for on-spherold points is givor_ by

!

i+ tan _i = (1 - P.l)tan _. (,_,,._;) ........................

!_ Using double-anBle t_Igon_etric relatiOnS,, it is possible to writ©

i, tan _-- tan,tt_

in +hich the tan _z terms Can bo eliminated by the use of equation (_.21) and
, a can be su_stituted fo_ g - _z. Ap.plying, familiar trigonometric identities,

equation (5.22) can t_en be reduced to

e 2 - sin _ co s g.tan a = 1 - e z sinZ_ '
(5.23)

i or .............................................................

_2 _ sin g cOS g

a - arctan ] _ _2 sinZ_. • (5.24)

A similar solution for a may be obtained in terms of g2 by eliminating the
tan p te_s in equation (5.22) in the same manner as used above to eliminate

the tan Pz terms. This yields

_z _ sin _z cos _z

a = arctan I - ¢= Sin=_ .................... (5.25)

The difference between geodetic and geocentric, latitude .at point T may be
detex_mined by the same method and may be exl_ressed as .....

_z _ sin _:Icos gl

ax = arctan I - _2 sin2_ " (5.26)

Again considering the geometry of the meridional ellipse shown in figure 5.2, .+.
the angles a and a z appear very nearly equal. Although figure 5.2 greatly
exaggerates the eccentricity of the rearth spheroid, the actual difference -

between a and a x can be shown never to exceed 0.0000001 radian. ,Because
Of this, the following convenient approximation can be made.

_ sin Px cos I_

a = arctan 1 - ¢_ Cos_ (5.27)

It should be noted that, since a is very small, it is generally the practice, f
to make a small-angle tangent approximatio_ in solving for a. Ho_ever, in

the baseline program it was found that this substitution decreased the +aCcuraCy
of the latitude Calculation from about 0_0002 arc second to 0.01 arc second.

This is quite a significant difference wherl C0mparlng geodetiC coordinates as

5-14
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_" given on.the standard USCGS horizontal .control sheets. Thus, since, speed was
b, not a pr0blem in the baseline pro8ram, the usual small angle approximat_,n was
_;. not made for a SO that accuracies comparable with those of the U$CGS data
fl could be maintained.

p.,

_ Next, from the polar form Of an equation for an ellipse, Ra may bo expressed
as

h

'_ R1 _ (1- e_ cos2p )_7_' (5.28)
.... Applytn_ the law.of sines to triangle OPL provides the relat£o_

d = R sin _/sin _ = Ra sin a/sln p,

.

I from which

R_ sin

sin _ - R " (S.29)

Again, since th_ differences between a and a 1 and R1 and R, are negligible,
equation (5.29) can be rewritten as

RI sin a

sin _ _ R ($.30)

without significant loss of accuracy. Finally, since both a_ and _ are very

small, equation (5.30) can be simplified to _i

= Rxa/R. (5.31)

!The final step in the calculation of geodetic: latitude from the target's
geocentric latitude is accomplished by noting in figure 10 that

P = _1 + _. (5.32)

Thus, it has been shown that the transformation of geocentric to geodetic

latitude can be approximated by:

I. Calculation of the angle a_using.e¢_entricity, e, and geocentric lati-

rude, Pl (eq. (5.27)) I

2. Calculation Of R1 using eccentriCity_ s, _nd geocentric latitude,
Ps (eq. (5.28)) _:

3. Calculation of p using equation (5.31) i

4. CalCulation of geodetic, latitude, p, from geocentric latitude, p_, _ i

and _ (eq. (5.32))

5-15
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It now romalns to calculate the altltudo of the target above, the reference
spheroid.. Although the dlfferenco between R_ and R_ does not flare an appr¢=
Cinbl¢ effect on the OalcUlation Of a, it can introduce measurable error in

li the caloulatlon of. h. Therefore, it is doslrablc to obtain a more accurate

i solution for h than would be possible by direct substitution. This is aCoomp-
_ liShcd by obtaining a r_lationship between h and th_ known parameters R,

Ra, a 1, and _.
h
t
., From th_ polar _quation for an ellipse, the-ratio between R_ and.R_ can b_.

', cxpreSs.ey._...,a..S....... R_ (1 - cz cOs_tl)_/_
= (5.33)

R_. (I- cZ-_os_._)_/_.. '

which upon rearranging may be written as

R_ [ e_(sin P_ ¢°s _ + ¢°s _ sin P_ ) 1_/z.
-- _ sin(_ - p_) (5.34)
R_ 1 + 1 - _ cOS_ ttz ... •

It is apparent (fig. 5.2) that p_ - _ equals _ - a_, a very small angle.
This allows another convenient approximation_to be made. That is, sin p._ is
approximately equal to sin p_, and cos p_ is approximately equal to cos p_.
Thus, by substituting _ - a_ for p_ -p_, using the sine and cosine approx-
imations, and c0mhining equations (5.27) and (5.28), the R_/R_ ratio may now
be written as:

-- = [1 + 2c_(a - 13)]_/_-. (5.35)
R_

I Substituting the expression for _ obtained from equation (5.31) yields

R_
-- = I �2a_(]- R_/R)x/_. (5.36)

Applying the first two terms of a binomial expansiOn to equation (_.36) yields

--R,.= i +-R-(R - Ra). (5.37)

Notln 8 that R - Ra very nearly equals h, and making the subs_itutio_

R_- R = a_h (5.38)
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Ra = R_ + %_h. (5.39)

: Applying trigonometric relations to _riangles OPS and OQS t_ figure $.2 yields

h _ R cos 1_ - R_ cos al. ' (5.40)

li',,_ Approximatingequation(5.40) cosbecomesa_and cos _ using the first two terms of a costne....se_.t¢._., .........................
h = R(1 - _/2) - R_!(1 - ,I/2), (5.41)

i Or .........

h = (R - R2) - R__ - Rzal). (5.42)

Noting that a I - _(R/R_) and 13 = a_(R2/R), equation ($,42) can be rewritten as

h = (R - R2) (1 + axl_/2). (5.43)

It now remains to combine equations (5.39) and (5.43) to obtain the following

expression for h in terms of r, R_, a_, and _.

h = [R - (ax_h _ RI)](1 + aI_/2) (5.44)

5_ultiplylng the two right-hand terms and rearranging, equation (5.44) becomes

(R- Rx)(1 + axe/2) . ]

h = 1 + a_p + a_pZl2 " (5.45)

Since the second term in the numerator is the first two terms Of the expansion

of 1/(1 - axe/2), and since the denominator is nearly the value of the first
three terms of the expansion of 1/(1 -a_/2) _, equation (5.45) can be
approximated by

(Z- R_)(I - a_/2)_

h = (i -

or

h = (R - R_)(1 - a,_/2). (5.47) , __

Thus, it has been shown that by. the use of small angle approximations and the
first two or three terms of blnomial expansions, it is possible to arrive at
approximation solutions for the spheroid geodetic Coordinates and the altitude
abo_e Spheroid of a trt _ked target. Whil_ the-numerous approximations involved

in this solution method _g_h_t te_d to destroy confidence in the accuracy of th_



t

SOlution, the Progr_n Validation,section shoes that the-approximation delivers
i,, surprisinsly_ accurate, results, that are well within the least-significant-bit

;: accuracy of most modern, radar.tra_klns systems..

,'_ Variable Names

k.i,

f:. Name ........ Description ........Aa ..... Le_nngthof scmimajor axis of reference spheroid in meters

Aft Target altitude above sea level in meters

Bb Length of scmiminor axis of reference spheroid in meters

. COst Cosine of target geocentric latitude, Pl

) Cost2 Cos P1_

Alpha aa term in equation (5.26)

'_ E E coordinate in meters

El E coordinate in input units

E2 Eccentricity squared

13ase Square root of Base2

Base2 ......E2 + F2.

Beta _ term•in equation (5.31)

F F coordinate in meters ........

F1 F Coordinate in input units

d d coordinate in meters

GI _ coOrdinate in input units

Radius Le.ngth of target geOeontrlc position vector in meters
!

R1 Ra term in equation (5.28),in meters

Sint Sine of target geocentric latitude p..= ,.;
r

Ucnv Conversion faCtOr _ i
l
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Computational A18ortehms
b_

_,. The essential algorithms used for th© Purcell and Cowan approximation solution
I, are as follows:
b

A. Subroutine Purcell: Subroutine Purcell contains the primary computational

_ algorithms needed for the Purcell and Cowan solution. Upon initial entry

_,. into Purcell, the subroutine calls Osel (step 2)to allow the_0perator to

' make the output device selection. After the output selection.has been

' made, the program calls Efgentry, which prompts the operator to enter the
universal space rectangular coordinates of the target in the selected
input/output units (E1-F1-G1). Subroutine Efgentx7 also requests the
appropriate value of geoid separation• in the selected units. If this value

i is not known, zero should be entered. The program then returns tosubroutine Purcell where it first converts the input (E1-F1-G1) coordinates

and separation of ge.old value into meters (steps 5 to 7). Next the square
Of the base length (Base2) of the geocentric triangle :s computed as
E_ + F 2 (step 8). At .step 9 the square root of Base2 is taken tO yie_Id
the value of the base leg. The geocentric radius (Radius) Of the target
point is next computed in step 10, and step 12 computes the geocentric
lati_ud.e of the target point. Intermediate steps (13 to 16) simply compute
the sine and cosine terms needed in _teps 17 and 18. In step 17 a value

for Alpha is cOmputed from equation (5.27), in step 18 a value for RI

(figure 5.2) is computed from equation (5.28), in step 19 a value for Beta-

is computed from equation (5.31), and in step 20 a value for geodetic
latitude is computed fEom equation (5.32). In step 20 the geodetic

latitude in radians is converted to degrees hy multiplying by the factor

180/_. The degree mode is restored at step 22 and at step 23 the longitude
of the surface point is computed using the usual trigonometric relations.
After the computations are completed, the program calls •subroutine
Coordprlnt, which prints out and displays the results. If a value for the
separation of geoid was entered in the Efgentry subroutine, then the target
altitude is adjusted hy this amount prior to printout. If additional
entries are desired, the operator presses COlqr, and the program returns to

the Efgentry subroutine to receive the next set of EI_FI-GI coordinates and
the geoid separation value.

1. Purcell: I
2. GOSUB Osel

3. Purce111: !

4. GOSUB Efgentry
5. E=E1/Ucnv
6. F_-F1/Ucnv
7. G=G1/Ucnv

8. Base2=E*E+F*F
9. Base=SQR(Base2) _"
10 RadiusfSOR(Ba se2+G*G) (

11. DEFAULT ON
12. I_AD

13. UI=ATN(G/Basc )

14. Cost=Base/Radlus

15. Sint=G/Radius
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16 ........Cost2=.Cost *Cost

17. Alpha_ATN(E2*Sint.*Cost/(l_E2*Cost2))
18. RI=Bb / SOR(1-E2*Cost 2 )

19.. Beta=RlSAlpha/Radtus
20. Lat= (Ui+Bota) *Ig0/PI

21. AI t_ (Radius-Rl)* (1-Alpha*Beta/2)
22..DEG. ....
23.. Lon=I80-ATN (F/E)
24. DEFAULT OFF

25. GOSUB Coordprint
26. PAUSE -
27. GOT0 Pttrcelll

B. Efgentry subroutine: The Efg_ntry subroutine is, used to receive operator

i_ inputs, of the universal space rectangular coordinates,and geoid separation
in the selected input/output units. These values are used by the Purc e.ll....................
subroutine

C. Coordprlnt subroutine: The Coordptint subroutine is common to all the off-
spheroid coordinate determination programs. It prints both the input
values (E1-FI-G1) and the Output values of target latitude, longitude,

spheroid elevation, and 8eoid elevation.

Progr_ Operation

_Tne Purcell and Cowan approximation solution is computed by the subroutines

previously described. At the start of the main program, the Operator is asked
to select the desired input/output units and the spheroid/datum reference to be
used in the calculations. Once these selections have been made, the main menu

is displayed and the operator makes the EFG TO LAT, I_ON, AND ALT selection.

The program then displays:

SELECT _THOD

0 = PURCELL AND COWAN
I = LAGRANGE (CLOSED FOl_i)

2 = BO_'RING
3 =G_9) (CLOSED FOrO_)

The operator selects 0 and presses CONT to proceed to the Purcell and Cowan
solut ion.

I A. Parnmeter entries. Parameter_entrles are requested sequent_ially as: '
ENTER GEOCENTRIC 'E',£OORDINATE IN (selected u_tits)

i L

ENTER GEOCEbrl_IC *F' COORDINATE IN (selected units) ,,

i .ENTER GEOCENTRIC 'G' COORDINATE IN (selected units)

Ii ENTER GEOID SEPARATION IN (selected units)
5-20
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_ B. Program output. The entry parameters and Computed values &_o output on the
/

_ selected output devio0 as:

GEOCENTRIC- rE' COORDINATE _. -2459439.14 METERS
' GEOCENTRIC 'F' COORDINATE ,.-4625532.17 METERS

G_OC_TRIC 'G.' COORDINATE, = 3643414.76 _IETERS -

_ _ GEODETIC LATITUDE = 35 00 00.0023 (35.00000065) (0.6108652S0)
GEODETIC LONGITUDE _ 118 00 00.0002 (118.00000005) (2.059488_18)

_,, SPHEROID ELEVATION = 10000.00 _[ETER_

_ GEOID ELEVATION = 10014.57 METERS

I As previously indicated, the unbracketed angle term is: the angle value indegrees, minutes, and seconds. The first bracketed angle term is the angle
value in degrees, and the second bracketed angle term is the angle value in

' radlan$.i

i
• i

Program ValidationValidation of the Purcell and Cowan routines is performed in the same manner as

described for the other off-spheroid coordinate solutions, and the same entry
values are used to provide a cross-check of computational accuracies between
the programs. With the Purcell and COwan solution method, the greatest

degradation in accuracy occurs in the latitude calculation, which is in error
by 11 meters when the target altitude is 10,000,000 meters. The altitude
calculations return the same accuracies as do the closed-fOrm solutions.

5-21

k



TABLE $ .2. PURCEIJ, AND COWANSOLVrION VALIDATIONS

b

b_ P.ar am_t e r Actua 1 va 1 ue C0mput ed va i ue

For E_ -2455593.45 m, F _-4618299.59 m, and G _3637679.00 m

',i Geodetic latitude 35 O0 00.0000 35 O0 00.0000Longitude __ 118 00 00.0000 118 00 00+0000

b Altitude 0.00 m 0.00 m

For E= -2455978.02 m, F -_ -4619022.86 m0 and G = 3638252.58 m

Geodetic latitude 35 00 00.0000 35 00 00.0003

Longitude 118 00 00.0000 118 00 00.0000
Altitude 1000.00 m - 1000.00 m

For E _ -2459439.24 m, F = -4625532.27 m0 and 6 = 3643_14.76 m

Geodetic latitude 35 00 00.0000 35 00 00.0023

Longitude 118 00 00.0000 118 00 00.0002
Altitude 10000.00 m 10000.00 m

For E ....2494050.31 m, F = -4690626.42 m, and G = 3695036.64 m

Geodetic latitude 35 00 00.0000 35 00 00.0234

Longitude 118 00 00.0000 118 00 00.0001
Altitude 100000.00 m 100000.60 m

For E = -2840162.04 m, F = -5341567.92 m, and G = 4211255.44 m

Geodetic latitude • 35 00 00.0000 35 00 00.1801

Longitude 118 00 00.0000 117 59 59.9999
Altitude 1000000.00 m 1000000.00 m

For E = -6301279.35 m, F = -11850982.85 m, and G = 9373443.36 m

Geodetic latitude 35 00 00.0000 35 00 00.3634

Longitude 118 00 00.0000 117 59 ....59.9999
Altitude i0000000.00 m 9999999.97 m r

t r
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The nowring ApproximatiOn Method

J

;" The Bowrlng method,calculates the geodetic latitude and_altltude of a target ....
_'r from universal space rectangular coordinates by th_ use of successive

iI, approximations. The program requires rough calculations Of geodetic latitude.
and target altitude as inputs. These calculations are refined during one Or

p_ more passes through the correct0r equa.tfons Until a sp.eoifi_d level of accuracy
is achlev_d. In practice it has been found that a single pass through the __

i',/ equations yields results that are comparable to those of the closed-form

solutions. For 12-dlg_t computational equipment, one-pass solutions for target
points under approximately 1,000,00O meters are ciose to the precision limit of
the system, For higher altitude points, the precision limit of the system is
reached on the second pass, so additional passes are unnecessary and do not

improve the.. results .................

The theory presented in this section reflects findings contained in
referenc_ 7, which was prepared by I the Ohio State University Mapping and
Charting R,-.search Laboratory. However, emphas:Ls in the present document is
placed on the derivation of the approximating _:quations and on a comparison of
the results of the Bowring method with results from _he other solution

techniques.

Figure 5.3 shows the first quadrant of a me_idional ellipse, N is the normal

line 0/_ o, the extension of which passes through an off-spheroid point P.
GO is the G coordinate value of the surface point Pc, and G is the G coor-
dinate value of the off-spheroid point P. The distance Of the point Pc from

the rotational (G) axis is given by ro, end the distance of .the point P from
the G axis is given ,.by r. Obviously, re2 = Eo_ + F_ and r.2. = E_ + F2. ,Other
important, geometric relationships from figure 5.3 are:

' F

r _--'-'-_ _ _Tangent

P(r, G)
r

Note: The coordinate r \ :!

iies i_t the meridioual / _-Normal \
plane of the tarr, et _/ - l._.ne \ !

0 -_r __

r

(: ........ ]

Figure 5.3.
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_;, r o ._ r "- h cos p -_ N cos p, (5.48)

_ and

p

;: GO _ G- h sin p = [(1 - e_)N] sin p. (5.49)
p..'.

" The equation of the meridional ellipse shown in figure 5.3 is given byp\ -.

' r L_ o2

'i a' +_'7 = I. (5.50)

The slope of a tangent line to the ellipse is obtained by implicit differentt-
t atlon 0f equation (5.50):

2__r 2_ dG = 0 (5.51)a2 + b'-_a--_

or

dG _ b__2.r

_-'/= as _" ,. (5..52) i
Obviously, the slope of the normal line is the negative reeip_oca!, of the slope
of the tangent line, or

dr a 2 G-_ = _- (5.53)
dG b 2 r"

The equation for points lyln8 0n the tangent line to the meridlonal ellipse
at polnt Po is

b2 _o.

Gt - Go = - a_ Go (r t - _o), (5.54)

where r t and Gt define the set of points lying on the tangent line.

ReCalling that bZ/a 2 _- 1 - e _ and grouping the x. and G terms yields ............

1
aS = r°rt + 1 - e_ G°Gt" (5.55)

Equation (5.55) must be satisfied for all points lying on the llne tangent tc

the meridional ellipse-at the point Po.

Similarly, the equation for a line normal to the merldional ellipse at the .... ,
po._!._t Po is.

5-24



?

', Or_Go

'. Gn " Go _ b _ r o (_n r°)' (5.56)

;_.

In oquatlon (.$.56)_ rn and On define the.sot Of points on a llno normal t.o the

':_ me_idlonal elllpso at the point (re, Go).

" Again, by substituting a*/b2 = i/(I _ e _) and g rOUplng !ike terms, 0quatlon
_ (5_) may be rewrit'ten as

r..&n 13-n (i - ez) = _2. (5.57)
re _o

If the relations for r o and Go given in equations (5..48) are substituted and
the terms rearranged, equation (5.57) may be rewritten for the line passing

through P_ and P as:

(l - e_) r sin _ - G cos _ + 82h sin _ cos [_ -_ 0. (5.58)

Since the specific coordinates of the point P have been defined as r and G, the
subscript n has been dropped in equation (5.58).

Substituting k = (a_/b 2) - 1 and rearranging equation (5.58) further yields

tan B _- (! - k)G _ k(h sin P). (5o59)r r

To obtain starting values for h and sin _t, a spherical solution may be used.
Thus,

= arctan(G/r) and h = (r_ + GZ) I/_- (a + b)/2. (5.60)

These v_lues are then substituted into the h and sin _ terms in equation (5.59)

to obtain a more accurate approximation of _.

Because k is always less than 0.007 and the value Of h sin _ is generally much

smaller: than the values Of r. and G, errors in the rough calculation of h sin _
should not greatly affect the first-pass approximation of tan _ obtained from
equation (5._9). (Note that equation (_.59) is an exact equation, but _he
result is approximate because both h and sin B are only roughly known at this
pc int. )

The next step makes use of the equation for the tangent line at the point

Po (eq. (5.5_)). Since both the coordinates (r, G) of the point P are known
exactly, and since the value Of _ has been approximated with reasonable r
accuracy using equation (5._9), it is now possible to apply the general formula
for the distance between a point and a llne to_compute a more accurate value of
h.

From analytic ge_etry, the distance d between a point P(x_, y_) and a line
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'_ _hose equation is in the form Ax + By + C = 0 is given by th_ formula .

Ax t +.-By I + C

,, (A2 _.B_),/_ • (5.6.1_

In this ¢.nse, the. ooordlnates of the point P arc (r,. G) and the equation for
the tangent line in the r and G Ooordinate System was given by equation (5,55).

'_ Substituting values for r o and GO from equations (5.49). and rearran$ing the •

i/! terms ..of equation (5.55) to the form Ax + By + C _ 0 yields ....................

}' r t cOs._�G t sin g_- a_.lN = 0., (5.62)

wh_,re r t andfi t again define the set of points lying on thO tangent line.

If the values from equation (.5.62) are now substituted into formula (5.61), a
I more accurate value of h can be obtained as

h "-r cos _,.+ G sin _ - a2/N,. (5.63)

where

N _ al(l - s2sin_)x/2 . (5.64)

If the first-pass valu_ of tan p obtained from equation (5.$9) is denoted by

!(i + k)G - k(h sin _)_

t - tan p, = r .. ' (5.65)

and if (h sin _)2 denotes a second approximation of h sin _ based on the

value of _ obtained from equation (5.65) and a value of h obtained from equa-
tion (6.53), then a second approximation for h sin p may be obtained as fol-

lows. A new value of h (denoted by h_) is obtained from reapplication of
the equation for the distance between a point and a line,

h, = r cos Px + G sin ].tt - a_'/N_., (5.66)
]

:i!t
wh_ r e ,,_

N, = al(l - u2sin2p,) I/2 . (5.67) !'

1
Then, using the new value of h, (h sin g)2 can be expressed as

(h sin _i)z -- h, sin p,. (5.68) i

']."he final value for _ may now be obtained by substituting the value of b sin _ {
given by equation (5.68) into equation (_.6_) and solving for _ a_
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(1. + k)(_ - k(h Sin _),
, )_a = cretan r ' (5.69)

ii.

t' The final value for h i_ computed from either

h =...JO___ _ (1- eZ)N, (5.70)
sin p_

|.

or

h -__ - N. (5.71) ........
cos gz

Greater accuracy iS obtained from the equation havin$ the larger denominator in
the first term.

In the event that additional accuracy is required, a second pass throush the

approximating equations can be made using the value of _ obtained_from equation
(5.69) and the value of h obtained from either equation (5.70) or (5.71).

Summarizin 8, the steps used in calculating geodetic latitude and altitude are: !
1. Obtain rough approximations Of geodetic latitude and altitude using ]

equations (5.60),

2. Use the values of h and _ obtained from step 1 in equation (5.65) to
obtain an improved value for _ which is needed in equation (5.68). Also
compute N from the new value of _.

3, Solve equation (5.68) for an improved value of h sin _.

4. Solve equa'tion (5.69) for an improved valr_ of _.

5. Compute the final value of h from either equation (5.70) or (5.71).

6. If additional accuracy is required, use the values of _ and h from

steps 4 and 5 to again compute B using equation (5.65) and follow the I
same procedures as outlined in steps 3 to 5. Repeat as many times as
necessary to reach the pz,,.cisiOn limit of the system.

Variable Names

Name Description

Aa Length of semlmajor axis of reference spheroid in meters /_
!Aa2 a z in meters squared

Alt Height of off-spheroid point above reference spheroid in meter_
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, Bb Length.of uemimino% axis of _ofe%enee 8pher____oid £n meters

I" Bb2 b z in meters squared.

_ Cosu CosLno of geodetic latitude

)_ E E coordinate in motors

l E1 E coo_,dinate in._put units- E2 EccentriCity squared
t'

F F coordinate in m0ters.

F1 F..coordinate in input units|

O G coordinate in meters

GI G coordinate in input units

Geoidsep Separation of geoid in.meters

Geosep Sepal'argon of geoid in input units

H Working height of target above reference spheroid in
meters

Hsinu Product of h and the sine of-the target's geodetic
latitude

K (aZ/b _) - 1

N Length of great normal passing through the surface
point in meters

R Square root of P_ in meters

I_2 E_ + F2 in meters squared

Sinu Sine of geodetic latitude

T Tangent Of U ...

Times Number of tim_s the approximation equations are to be

repe_ted
h<

U .... Geodetic latitude in degrees (

Ucnv ConversiOn fact or
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j: Computatlona I _igorithms

_!_ The essential algorithms used for the Bowring app_oxi_atlon m©th0d arc as
r follows'

il
A. Subroutine Bowrlng: Subroutine Bowrin8 contains the primary computational

,_ algorithms needed fo_: the Bowring solution. Upon initial en,ry into

_ Bowrin8, the subroutine calls Osel to allow the operator to make the Output
I_' device select£on. After the output selection has been made, the program

calls Efgentry which prompts the operator to enter the universal space

rectangular coordinates of the target in the selected input,/output units
(E1-F1-G1). SubrOutine Efgentry also requests the appropriate value of

geoid separation in the selected units. If this value is unknown, zero
should be entered, The progr£m then returns to subroutine Bowrin8 where

the El, F1, and •G1 values are converted from input units into meters and

I stored in steps 9 to 1i as E, F, and G. Using the values of E and F, a
value• for R is computed (steps 12 and 13) for use in the approximating

equations. The other input parameter required by the Bowring algorithm is

I G. In Steps 15 and 17 the program implements equations (5.60) to Obtain a

first approximation of geodetic latitude and target altitude. A FOR-_XT

loop is established in step 18 to control the number of p_sses which will

be made through the approximating equations. In the baseline program, the

number of passes is operator seleetable. For example, if two passes are

desired, then the simple variable_Times is set equal to 2 to .provide two

passes through the FOR-NEXT loop. Upon entry, into the lOop, steps 19 and

20 implement equation (5.65) and provide_a better approximation of 8eodetir

latitude, _. The _tew value of _ is then used to improve on the estimate of

target altitude by. implementation of equations (5.67) and ($.66) (steps 23
to 25). Using the improved value of h from step 25, a new value of _ is

Obtained in step 27 through a direct implementation of equation (5.69).
The value ofN is again computed (step 29) using the latest value of _, and

a final value of h is determined from equation (5.70) or ($.71), depending

on the magnitude of _. At step 31 the the first pass is completed. If

additional passes have been s_lected by the operator, step 32 will cause

the program to return to step 18 ,_vhere the same sequence of operations will

be commenced.using the _alues of _ and h returned from the pass just

c omp 1 e ted.

To-determine whether the maximum accuracy has been achieved, test cases can

be run using several iterations through the approximating equations. When
the values stabilize, the approximations have reached the maximum accunacy

attainable with the_system. It has been found that.one pass through the

above _.!_orithm reaches the precision limit of a 12-digit computational

system for all but very high altitude_points (lO,O00,ooo meters, or higher).

After the latitude and altitude Computations have been completed, the I

longitude of the surface point is Obtained from the usual trigonometric

relations (step 34), and the reSUlts are displayed or printed in. the

universal Coordprlnt subroutine. If additional• values are to be computed,

the operator presses Co_'r and the program returns to the entry point.
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1. Bowrlng: I
2. GOSUB Osel.

'.'. 3. Aa2_Aa*Aa
I_:. 4. Bb2ffiBB*l_b

_, 5. K_Aa2/Bb2-1
6. Times=2

,, 7. Bowrlnsl:l
_. 8. GOSUB Efgcntry ......................

i 9. E=E:/Ucnv

'"_' 10. I;=F1/Ucnv
11. G-_Gi-Ucnv

12 ....R2_ESE+F-*F
13. R=SQR(R2)

i 14. DEFAULT'ON15..U=ATN (G/R)

16. DEFAULT OFF
17. H_SOR(R2+G*G)-(Aa+Bb)/2
18. FOR Count=X TO Times

19. T_( (I+K)*G-K* (H'SIN(U)) )/R

20. DEFAULT ON

21.. U=ATN(T)
22, DEFAULT OFF
23. GOSUB Ncale

24. ¢osu=COS (U)

25. tlfR*Cosu+G*Sinu-Aa2/N

26 ....Hs inu=H*S inu 1
27. U=ATN((I+K)SG-K*Hsinu)/R i
28. Co._u=COS(U)

29 ....GOSUB Ncal c

30. IF Sinu>Cosu _EN II=G/Sinu-(I-E2)*N i

31. IF Cosu>=Sinu THEN HfR/Cosu-N 'I
32. NEXT Count
33. DEFAULt: ON

34. lon=I80-ATN (F/E)
35. DEFAULT OFF
36. Lat=U
37.. Alt=li

38. GOSUB Coordprlnt
39. PAUSE

40. OOTO Bowringl

B..........Efgentry subroutine: The Efgentry subroutine is used to receive operator

inputs of the universal space rectansular cOordinates and geoid separation
in the selected input/output units. These values are Used by the Bowrin8
subroutine.

C. Coordprint subro__tine: The Coordprint subroutine is CommOn to all the off- _"

spheroid coordinate determination programs. It prints both the input ( i
values (EI-I_I-G1) and the output values of target latitude, longitude,

SpherOid elevation, and geoid elevation. I

i
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Program Operation

The Bowrin8 approximation solution is computed by the subroutines previously
i:i_ described. At the start of the main program,, the o_erator is asked to select ...............................
i,

,: the desired input/Output units and the spheroid/datum reference to be used in
the calculations. Once these sele0tions hav_ been ma_e, the main menu iS

p_ displayed and the operator makes the EFG TO LAT, LON, and ALT selection. The
_i CRT then displays a r0_uest for the operator to select the desired solution
_ method as follows:

SELECT _THOD

0 = PURCELL AND COWAN
I = LAGRANGE (CLOSED FORM)
2 _ BOWRING

: 3 = G_I). (CLOSH)FOI_) .....To use the Bowfins apprOXimation, the operator enters 2.

The next CRT display requests that the operator select the desired output
device.

SELECT OUTPUT DEVICE

O=CRT
1 = THEPJiAL PRINTER
2 -- L_rNE PRINTER ......

The program then requests that the operator select the number of passes to be
made through the approximation equations. This request is d_splayed as

ENTER NU_[BER OF PASSES (DEFAULTS _TO 2)

The last operator entries requested are the E-F-G coordinates and the geoid

separation. This request is displayed sequentially as: ]

ENTER GEODETIC 'E', COORD IN (selected units)

ENTER GEODETIC 'F' COORD..IN (selected..units)

ENTER GEODETIC tG' COORD IN (selected units)

F_TER GEOID SEP IN (selected...._nits)

After each prompting message shown above is displayed on the G_T, the operator
responds by entering the apprOpriate values in the units selected .... The program _"
converts all input values to meters and then calculates the target altitude and /
geodetic latitude. Unless another number of passes has been selected by the
operator, the progra_ makes two passes through the cOmputational algorithms,
When the altitude and geodetic latitude Computatlons are completed, the program
calculates target longitude and then Calls COordprint.
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, SubrOutine Coordprint displays the computed results in the following form:

DATUM:, NORTlt AMERICAN (NAD) EARIH _K)DEL: CLARKE 1866

i_' GEOCENTRIC 'E' COORDINATE _ ..... 2459439.14 METERS

_,_ GEOCENTRIC 'F' COORDINATE _ -4625532.27. METERS
OEOCF,NTRIC 'O' COORDINATE _ 3643414.76 M/_TERS

P_

_ GEODETIC LATITUDE = 34.59 59.9999 .... .(34.99999998) (0.6_(_865238)

," GEODETIC LONGITUDE = 118.0O 00.0002 (118.00000005) (2.059488518) .............

SPHEROID ELEVATION =- 10000.00J_ETERS
GEOID ELEVATION = 10014.28 METERS

Again, the unbracketed angle term is the angle value in degrees, minutes, and
seconds. The first bracketed angle term is the angle value in degrees, and the
second bracketed angle term is the angle value in radians. In the example
shownj meters are the selected input/output units.

Program Validation

Validation of the Bowrin8 apprOximation solutions is performed in the same
manner as described for the other off-spheroid coordinate determination
programs, and the same entry values are used to allow comparison of the
computational accuracies of the four off-spheroid programs. It is interesting
to note that• the Bowring approximation mathod achieves better accuracy than the
closed-form solutions when just one pass is used. This is due to a loss in
accuracy when rOOts of large high-order terms in the quartic equations must be
found.

Table 5.3. contains results from the Bowring method when one pass through the

approximating equatiOns is used. Table 5.4 contains results from the:two-pass
solution. Although the second pass provides some improvement in accuracy, it
is not apparent in table $.4 except for the 10,000,000 meter altitude point.
The improvement at the lover levels occurs in digits beyond the precision _hown
in the tables and is far less than the leastrsignificant-bit values of common i
tracking equipment.

C
L
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TABLE 5.3. ONE-PASS BOWRING SOLUTION VALIDATIONS

Paramator Actua 1 Va1 ue Computed .val ue

!:, For E _ -2455593.45 m0 F = -4618299,59 m, and G = 3637679.00 m

r_ Geodetic latitude 35 00 00.0000 35 00 00.0000 ....

_i:; Longitude 118 00 00-.0000 118 00 00.0000,
'_ Altltude 0.00 m 0.00 m

i
For E = -2455978.02 me F = -4619022.86 m0 and O = 3638252.58

i latitude 35 00 00.0000 3500 O0.0001 ......Geodetic

Longitude 118.O0 00.0000 118 00 00.0000

Altitude lO00.00 m I000.00 m-

| For E = -2459439.14 me F = -4625532.27 m, and G = 3643414.76 m i

Geodetic latitude 35 00 00.0000 34 59 59.9999-

Longitude 118 O0 00.0000 118 O0 00.0002
Altitude 10000.00 m 10000.00 m

Fore = -2494050.31 m, F = -4690626.42 me and G = 3695036.64 m

Geodetic latitude 35 00 00.0000 35 00 00.0000
Longitude 118 00 00.0000 118 00 00.0001
Altitude I00000.00 m I00000.00 m

For E = -2840162.04 m, F = -5341567.92 m0 and G = 4211255.44 m

GeOdetic latitude 35 00 00.0000 35 00 00.0000
Longitude 118 00 00.0000 117 59 59.9999
Altitude I000000.00 m I000000.00 m

For E = -6301279.35 m, F = -11850982.85 m, and G = 9373443.36 m

GeOdetic latitude 35 00 00.0000 34 59 59.9984
Longitude - 118 00 00.0000 117 59 59.9999

Alti_ude lO000000.O0.m 9999999.91 m r

(
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i!, TABLE 5.4. TWO-PASS BOWRING SOLUTION VALIDATIONS

hi'

,1 _ =

Parameter, ACtual value Computed valuc,

P,_ For E _ -2455593.45 m,.F. = -4618299.59 m, and G = 3637679.00 m

f_

_/ Geodetic latttudm . 35 00 00.0000 35 0000.0000

' Longitude 118 O0 00.0000 118 O0 00.0000

i Altitude 0.00 m 0.00. m

For E = -2455978.02 m, F = -4619022.86 m, and G = 3638252.58 m

Geodetic latitude . __ 35 00 00.0000 35 00 00.0001
Longitude 118 00 00.0000 118 00 00.0000
Alti'_ude I000.00 m 1000.00 m

For E = -2459439.14 m, F = -4625532.27 m, and G = 3643414.76 m

Geodetic latitude 35 O0 00.0000 34 _9..59.9999

Longitude 118 O0 00.0000 118 00 0.0.0002
Altitude 10000.00 m 10000.00 m.

For E = -2494050.31 m, F = -4690626.42 m, and G = 3695036.64 m

Geodetic latitude 35 O0 00.0000 35 00 00.0000

Longitude 118 00 00.0000 118 00 00.0001
Altitude 100000.00 m 100000.00 m

For E = -2840162.04 m, F =-5_41567.92 m, and G = 4211255.44 m

I

Geodetic latitude 35 O0 00.0000 35 O0 00.0001
Longitude . 118 O0 00.0000 117 59 59.9999
Altitude 1000000.O0 m 1000000.00 m

For E= -6301279.35 m, F = -i1850982.85 m, and G = 9373443.36 m

Geodetic latitude 35 00 00.0000 35 O0 00.0000

Longitude 118 O0 00.0000-. 117 59 59.9999
Altitude I0000000.00 m 10000000.00 m

i r
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The OMI} Closed-Form Soluti0n

I The Gig) closed-form solution c0mpute.s the geodetic latltudc and altitude, of a

P' target f_om universal space rectangular spa0o C60rdinates by the use of ..two
simultaneous equations. The first is the equation for the normal line to a

,_ me_ridlonal ellipse that passes through the target point. The second is the

t standard equation for the reference ellipse. Since the G_fDmethod provides a

;I';I direct closed-form solution, the accuracy of the result is dependent only onthe precision limit of the system. With a 12-declmal-digit computational word
length, latitude calculations are accurate to better than O.0001 arc second and

_ altitude calculations arc accurate to better than 0.01 meter up to altitudes of
lO,O00,OOO meters.

i Figure 5.4 shows the first quadrant of a meridi0nal ellipse. N is the normal

line QPo, the extension of which passes through any off-spheroid point P.
GO is the G coordinate value of the surface point Pc, and G is the G coor-

dinate value of the off-spheroid point P. The distance of the point Pc from
the rOtational (G)axis is given by ro, and the distance of the-point P

from the G axis is given by r. Obviously, re2 = E_ + F_ and r2 _ E2 + F_.
Note that the r and O coordinates and the geometriOal relationships between

the points P and Pc are the same as those, shown in figure 5.3 for the Bowring
s01utiOn.

C

i" ................zo , Co)
b

Notc: Thc coordinntc r

lics in t!:cm_ridiozml
plane of the tarp,Ct .......

O

:r i"
o

Figure 5.4.

The equation for tlte.norn_al line to the merldional ellipse that passes
thrOu8 h the points P and Pc Itas been derived in the preceeding section as

'i
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_.' a2 Go

:" (_ - Go = b2 re (r - _o) (5+.72)

:t,

Ii Equation (5.72) may be solved for Go, yielding ............................ ............

i b_roO
G e = +

i, a'_ ro (ai- :- 'b_Y" (5.73)

t

The equation for the meridlonal elllpse shOwn in f+i$nze 5.4 is given by ..... 1
I

r 2 G_
a-i-+ _ = 1. (5.74)

The coordinates of the surface point Pc(re, Go) must therefore satisfy equa-
tion (5.74) as

aS + _'_ = 1._ (5.75)

Substituting the value for G o from equation (5,73) into equation (5•75), com-

bining terms, and clearing fractions yields an expression for ro in the form

of a quartio equation,

[(a_ - b_)2b2]r_ - [(2a4b 2 - 2a2b+)r]r_ .

+ [(a4b2)r _ + (a2b4)G _ - a+bZ(a_- b_)+]r_o

+ [(2a+b _ -2a4b4)r]ro - [(a_bZ)x] _ _-O. (5.76) .......

SinCe a and b are known elliptical parameters, and both r and G are the known

coordinates of the point P, the substitutions

A = (a_ + b2)2b 2 (5.77)

B --_(2a4b _ - 2a_b+)r (5.78)

C = (a4b2)r 2 + (a2b4)G_ - a2b2(a 2 - b2) 2 (5.79)

D = (2a6b _ - 2a4b4)r (5.80)

E = -(a_b_)r z .... (5.81)

may be made to yit!_ an equation in the form

Ar_ + Br_ + Cr_ + Dr o + E = 0........... (5.82)

The solution of equation (S.82) will yield two real roots• One will be the
value of r whieh lies on the normal line where it intersects the meridional

ellipse directly _e16w the+++targetpoint. The Other intersection wiil occur at
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the far side of the ellipse where the negative extension of the normal line
b again interse0ts the meridional ellipse. Two other roots will he obtained in

i the solution of the quartic equation. Both of these will be imaginary numbers
_i wit_ no significance to this solution. Knowing the nature of the root_, it can

be seen from figure 12 that the real roOt whose sign is the same as the sign of
*: r will be the proper root.

'_ Yn the G_ algorithm, equation (5..82) is solved us.ins subr_utine Quartic, and

I,_' the value of r o obtained from this subroutine is then substituted into
_"_ equation (5.73) tO obtain the corresponding value for Go.

Knowing both r o and Go, it is a simple matter tO derive the geocentric lati-
_ rude of the. surface- point Pc. Then, using e_uation (1.8), the geocentric

i latitude of. the surface normal point can easily be converted to. geodeticl_titude. Having the exact geodetic latitude of the surface point, the

i altitude of the target can be obtained from either equation ($.70) or equation

(5.71). ....................

The longitude of the surface normal point is easily found from_the expression

;_-"180 .... arctan(F/E). ($.83)

This completes the derivation of the GMD closed-form solution tO the problem of
compUting a target's geodetic coordinates and altitude from known E-F-G
coordinates. It is basically a solution of twO.simultaneous equations with two
unknowns. Unfortunately, the relationships are such that the solution involves

finding the =,ootsof a quartic equation, a task which i,s somewhat costly from
the standpoint of computing time. However, the method is slightly faster than
the Lagrange solution and is more direct in that the actual coordinate value is
obtained rather than the secondary Lagrange multiplier term. It has _een fuund
that, for extremely high altitude targets, the GMD algorithms will prOvide
somewhat better accuracy than the Lagrange solution. For examp!e, tho E-F-G

coordinates of a target at 35 degrees Iatitude, 118 degrees Ion_itude, ai_d
1,000,00O,000 meters altitude are:

E = -387024183.84, F = -727886625.27, and G = 577214115.35.

On a 12-digit computational system, the Lagrange solution will complete a t_xget

latitude of 35.00001604 degrees and a target altitude of 1,000,000,197.3
meters. Using the same E-F-G coordinates, the GMI) algorithm will yield a
latitude of 35.00000812 degrees and an altitude of 1,000,000,099.8 meters.
Obviously, both solutions have reached the precision limit of the system
because Of the extremely large altitude computation. However, in this
instance, it appears that the GMD solution yields accuracies that are Slightly
better than those Obtained using the Lagrange solution. At a target height of

I00,000,000 meters, the GMD routine returns a result that is accurate to within
4/10,000 of an are second in angle _and 0.2 meter in altitude. At and below _"

I0,000,000 meters target altitude, the (;_) routines retUrn value_ accurate '=o (
within 1/lO,O00 arc second in angle and 0.01 meter in altitude.

f
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P_ Variable Names

b. Natnc Description

I' AO Constant portion of A term in equation (5.82)
I

)" Aa Length of semimajor axis of reference spheroid in meters

P' Alt Altitude of target above reference spheroid.in meters

_ Arab a - b ....An -. Normalized value of semimaJor axis (An = I) .................................

Apb a + b

_. B0 Constant portion of B term .in equation (5.82)

B2 Second pow.¢r .9f normalized b term

B4 Fourth power of normalized b term

Bb Length. of semiminor axis of reference spheroid in meters

Bn Normalized value of semiminor axis

C0a Constant portion of first part Of C term

C0b Constant.portion of second part of C term

C0c Constant portion of third part of C term

Cosu Cosine of geodetic latitude

DO Constant part of D term

EO Constant part of E term

E1 Input E.coordinate in selected units

E2 EcCentricity squared

En Normalized E coordinate

F1 Input,oF...coordinate in selected units

Fn Normalized F coordinate ......... _:

tr

G1 inpu.t G coordinate in selected units

Gn.. Normalized G coordlnate
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GnO Normalized G Qoordinate of surface point

Lat Geodetic latitude of surface _oint

LO_. LonBitudo of s_fa¢_ ._oint

N Groat normal through surface point

J_

Rn Normalized r coordinate of target point

Rn0 Normalized r coor_linat¢ of surface point

Rn2 Square of normalized r coordinate_of target point

Sinu Sine of geodetic latitude of sur£aoo_p.01nt

Tanup Tangent Of geocentric latitude of surface point

Terma_ Term A in-equation (.5.82) j

ITermb Term B in equation (5.82)

Termc Term C in equation (5.82)

Termd Term D in equation (5.82)

Terme T'?m E in equation (5.82).

U Geodetic latitude of surface point (also Lat)

Ucnv Conversion factor

X1 First real root of quaztic equation

r
X2 Second real root of quartic equation

Computational AlgOrithms

Algorithms essential tO the GM]) closed-form computation of geodetic latitude,

longitude, and altitude from .universal space rectangular c0ordinates are

presented be.low.

A. Subroutine Grad: Subroutine Grad is the main computational subr_)utine for

the G_) sOlution. Upon initial cnt:-y into Grad, steps I to 16 Compute the

constant parts of the A, B, C, D, and E terms in equations (5.77) to

(5.8i). These a_e dependent only on.the a and b values of the selected ......_.
reference spheroid, and, once calculated, can be used throughout all

Subsequent Computations. Both the a and b values are normalized (steps 2. _ i

and 3) tO the length of the semimajor axis (Aa) of the reference spheroid. I
This causes a and all higher po_ers of a to equal i and.reduces the b
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values to loss than 1. All 1©ngth p_ramotort, aro normalized to prevent a
b precision ov©rflo_ in the hi_h_ power terms.

I At step 17 the program calls Oscl to allow the soleotlon of the deslr_d

p_ output device. After the output dovi_o selection has boon made, the
program calls Efgcntry (step 19) whicl_ prompts the operator to entor the

,_ universal space rectangular coordinates of tho target (El, FI, and Ol) in

the selected input/output units. In st_ps 20 tO 22, these values ar_

i_ converted to meters and nOrmalized. Stops 23 and 24 reduce the three

dimonsional problem to two d_|nonslons-by odmpUtin_ the value Rn, which is
t.henormalized abscissa Of the target lying in the plane of the morldlonal

cllipso, passing through tlte target point. In steps 25 through 29, the

r constant portions of terms A, B, C, D, and E (eqs. (5.77) to (5.81)) are

combined with the normalized target coordi_ates Rn and Gn to obtain the

Complete cOefficic,nts of the quartlc equation (5.82). Note that program

variable Rn represents r in equatiOns (5.77) to (5.81), and Gn represents G
in equation (5.79). Subroutine (}uartic is called at step 30 and four roots

of equation (5.82) a_e computed. The two real roots (XI and X2) are then
tested in steps 31 and 32 to determin,.'the root whose sign matches the sign

of the target coordinate Rn. The simple variable Rn0 is set equal to the

root with the matching sign. This root is the abscissa of the surface

point whose normal passes through the target. At step 33, the surface

coordinate RnO is substituted into equation (5.73) to yield a value of Gn0,
the normaliZed ordinate of the surface point.

In the solution to eqnation (5.73), note that program variable Rn0 rep-

resents Ro. 6n0 represents Go, Rn represents r, and Gn repesents G. Also
note that the value of a in the s_me equation is equal to 1 because all
variables have be_n normali_ed to the length of the semimajor axis. In the

solution for Gn0 used in step 33, the (am - b2) term in the denominator

has been factor:ed into (a + b) and (a - b), which are represented as

program variables Apb and Amb.

Step 34 computes the tangent of the geocentric latitude (tanup) of the

surface point, and step 36 applies equation (1.8)tO convert geocentric

latitude to geodetic latitude. The value of geodctlc latitude is then used

in step 40 to compute the E-W radius of cu_wture, N, that is needed for
the derivation of the target altitude iu equation (5.70) or (5.71). Again,

, note that the selection of equation ($.70) Or ($,71) is made (steps 41 and

42) based on a test to determine which will yield the more accu_.te

calculation of altitude for the specific value of It. I

, The val'..eof longitude is determined very simply in stc;, 4_ by resolving

I the target's E and F coordinates into angular form, and the universal
subroutine Coordprint is called to display the results. After displaying

the results, the program pauses (step 48), If another point is to be c
reduced, the program will next proceed tO Step 18 where a new set of E-F--G _

coordinates may be entered.

It should also be mentioned that if a value for geoid separation were

entered in subroutine I_fgentry, then the final sea-level elevation value

would be cort'ceted by the same amount.
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1., Gmd:.! .........
_ 2. Anal
li 3. Bn=Bb/An
i_, 4. B2_Bn*Bn

l:, s. 4-B2*B
i_ 6. Apb_An ¤�P7. Amb_An-Bn

,_ 8. Amb2=Amb*Amb
; 9. Apb2=Apb*Apb

l_'_ 10. A0=Amb2*Apb2*B2

I:,. II. B0=-2*B2*Apb*Amb
12. C0a=B2
13. C0b=B2*Amb2*Apb2
14. C0c=B4
15. D0=2*B2*Apb*Amb .........................
16. E0=-B2
17. GOSUB Osel
18. Gr_di:I

19. GOSUB Efgentry
20. En=E1/Ucnv/Aa
21. Fn_'-F1/Uon v/Aa
22. Gn_-GI/Ucnv/Aa

23. Rn2 =En*En+Fn*Fn

24. Rn=SQR(R n2)
25. Terma=l

26. Termb=B0*Rn/A0
27. Termc-_(C0a *Rn2+C0b+C00*Gn*Gn)

28. Termd=D0*Rn/AO
29. Terme=E0 *Rn2/A0
30. GOSUB QuartlC

31. Rn0 =X2

32. IF Sgn(XI)=SGN(R n) THEN Rn0=XI

33. Gn0=Gn*B2*Rn0, (Rn-Rn0*Apb*Amb)

34. Tanup=Gn0/Rn0

35. DEFAULT ON
36. U=ATN (Tanup /(1-E2) )

37. DEFAOLT OFF

38. Sinu=SIN(U)

39. Cosu=COS(U)

40. GOSUB Noalc

41. IF Sinu>Cosu THEN Alt=On*Aa/S inu-(l-E2)*N
42. IF Cosu>=Sinu THEN Alt=Rn*Aa/Cosu-N

43. Lat=_

44. DEFAULT ON

46. Lon=I80-ATN (Fn/En)

46. DEFAULT OFF
47. GOSUB Coordpr in*. ........ _.

"148. PAUSE , :
49. (_OTO.Gmdl

B, F,fgentry subroutine: The Efgentry subroutine has been descr£bed for the
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' previous off-spheroid coordinate determination programs. The same
subroutine is used by tlio GMD program

C. Coordprint subroutine: The ooordprint subroutine is oommon to all Off_ ................
Sph0roid coordlnatc determination programs and has been described

prevlously.

ii! Program Operation.The. G_) closed-form solution uses the same input/output formats as described

i for the other off_spherold coordinate determination programs. The initlal

i display is:

SELECT _THOD

0 = PURCELL AND COWAN

1 = LAGRANGE (CLOSED FOR)I) ...............
2 = BOWRING

3 = G)_) (CLOSH) FOR_I)

The operator • enters 3 and presses CONtr. The program next displays:

SELECT OUTPUT DEVICE

0=CRT
1 = THER_La_LPRINTER
2 = LINE PRINTER

After. the output device has been.selected,, the Efgentry subroutine sequentially
displays :

ENTER GEODETIC 'E' COORD IN (selected units) .......

ENTER GEODETIC 'F* COORD IN (selected units)

ENTER GEODETIC '6' COORD IN (s_lected units)

ENTER GEOID SEP IN (selected units)

i

If the value of geoid separation is unknown, 0 should be entered and geoid and i
spheroid elevation will be. the same values in the result.

!
The program then enters the computational algorithm and computes the values of

geodetic latitude, longitude, altitude above spheroid0, and altitude above k"

g_oid. The results are displayed as: "
tr
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J
i AMERICAN (NAD) EARal[ MODEL: CLARKE 1866nATUM: NORTH

_i GEOCENTRIC fE e COORDINATE = -2459439.14 METERS
J} flEOCENTRIC iF' COORDINATE = -4625532.27 _T_R_

GEOCENTRIC '0' COORDINATE = 3643414.J6 _4ETERS

! GEODETICLATiTUDE -_ 35 00 00.0000 (35.00300001) (0.610865238)

ii GEODETIC LONGIllJDE = ll8 00 00.0002 (118.00000005) (2.059488518)
SPHEROID ELEVATION = 10000.00 _4ETERS -
GEOID ELEVATION = 10014.28 METERS

' Agair,, the uubracketed angle term is the angle value in degrees, minutes, and

i seconds. The first bracketed angle term_is the angle value in degrees, and the

f second bracketed angle term is the angle value in radians. In the example

shown, meters are the selected input/output uaits.

Program Val idation

!Validation of the GMI) closed-form solution is performed in the same manner as

described for the other off-spheroid coordinate determination programs, and the
same entry values are used to allow comparison of the computational accuracies
of the four programs. Table 5.5 contains results from the G_,Q) solution.

t.
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TABLE 5.5. G_._ CLOSED-FORI_ SOLUTION VALIDATIONS

P Param0ter Actual value Computed value

For E = -2455S93.45 m, F = -4618299.59 m, and G = 3637679-.00 m

./_ Geodetic latitude. 35 00 00.0000 35 00 00.0001

_ I,onsitude 118..00 00.0000 i18 00 00.0000

Altitude 0.00 m 0.00 m....

_ For E ---2455978.02 m, F = -4619022.86 m, and G = 3638252.58 m

Geodetic latitude 35 00 00.0000 35 00 00.0002

l Longitude 118 O.0 00.0000 118 00 00.0000
Altitude I000.00 m I000.00 m

For E = -2459439.14 m, F = -4625532.27 m, and G = 3643414.76 m

Geodetic latitude 35 00 00.0000 35 O0 00.0000
Longitude 118 00 00.0000 118 O0 00.0002
Altitude 10000.00 m 10000.00 m

For E _ -2494050.31 m, F = -4690626.42 m, and G = 3695036.64 m

Geodetic latitude 35 O0 00.0000 35 O0 00.0000

Longitude 118 00 00.0000 118 O0 00.0001
Altitude 100000.00 m i00000.00 m

For E = -2840162.04 m, F = -5341567.92 m, and G = 4211255.44 m

Geodetic latitude 35 00 00.0000 35 00 00.0002

LOngitude 118 00 00.0000 117 69 59.9999
Altitude 1000000.00 m 1000000.01 m

,!
For E= -6301279.35 m, F = -11850982.85 m, and G = 9373443.36 m

Geodetic latitude 35 O0 00.0000 35 O0 00.0001

Longitude 118 O0 00.0000 117 59 59.9999
Altitude 10000000.00 m 10000000.00 m

• L.

t _
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,, ClIAPTER 6

,'," ATMOSPIIERiC REFRACT ION

i '

!-

,_ This chapter describes the refractiOn correction method used in the G_)

_ baseline system. The software accepts raw range and elevation data from any

i local tracking system and perf:orms the high-accuracy refrac.tiOn correctiOns

" necessary for the analysis of test data. In addition, this chapter includes
discussions of the methods used to determine atmospheric refractivity from
locally observed psychrometric data or weather data.

Refractivity CalculatiOns

General Theory

To accurately correct for the effects of atmospheric refraction, it is

necessary to develop a refractivity model that closely approximates real-world
conditions. Several methods are available for computing a refractivity profile
from psyChrometric or weather data. Generally, the projection of the
refractivity profile is based on computed values Of station refractivity, Ns,
and an exponential decay factor Or scale height, He. While Ns can be computed .....
with a reasonable degree of accuracy, the computation of Hs is less accurate

and candegrade the elevation corxection significantly. Basically the problem ......
with Hs is due. to three factors. First, the makeup of the atmosphere is
dependent on area weather and climatic conditions that greatly influence the

refractivity profile, especially at the lower elevations. Second, most models

are based on an exponential decay pattern, which may vary significantly from
the true refractivity profile, especially when air masses mOve from water to

desert regiOns, when intense local surface heating is present, or when optical
or r-f energy must travel through nonuniform localized weather conditions.
Last, it is difficult to make actual measurements of atmospheric conditions at
elevations above the tracking site prior to each mission since this generally

b requires the use of specialized balloon-carried (radiosonde) equipment.
I Because of these prObZems, it has generally been the practice to use One or

more methods of scale height Computation based in part on the surface
measurements and in part On seasonal averages of psychrometric profiles. This•
is somewhat in the nature of a Farmer's Almanac apprOach to the correction of
otherwise high-precision tracking data, and, regardless of how closely the !
modeling equatiOns match the long-term statistical data, there is really no way
to be sure that the cOrneuiions for any given miSsiOn are reasonably near the
correct values.

i.

In the G_) baseline program, a refractivity profile can be obtaiDed from any of ,_
four separate methOds: (i) radiosOnde data entered manually into the prOgram,

(2) extrapolation of local and distant (e.g. Sentinel Peak) measurements, (3)
Standard regression equations based On surface measurements and statistical

decay patterns, or (4) Combinations of the first three methods. Both the

s_cond and third approaches assume that refraCtiVity varies exponentially with

• !
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altitude and that the complete refractivity profile at any given time can be
obtained by determining the refractivity that exists at the tracking station or

',, at other nearby obseryat.io.n.,..point.s....of.._,,kn.,,OW.n._.e!,ev, a,t.fO n, or both,

i
P_ Calculation of Ns From Psychr0metric Data

,_ In the absence of a direct-measurement refractOmetcr, it is necessary tO obtain

_i! accurate psychromctric or weather• data from which the modulus Of refre_tion can
il; be computed. Psychromotric parameters are obtained as dry-bulb temperature,

wet-bulb t_mperature, and barometric pressure. Weather data are obtained as
temperature, pressure, and dew point or relative humidity. Three combinations

I of these parameters may be used in the reduction program that computes the
partial pressure of water vapor and dry air pressure, which, along, with temper-
ature,, are necessary for the calculation of station refractivity. The program
also computes saturation vapor pressure, relative humidity (if not given as an
input parameter), and. absolute humidity. While the latter parameters are not
required for the refractivity computations, they are important for cof_paring i
derived data with data obtained from radiosonde or other direct measurement ISOUrCes.

If weather data are used, care must be exercised during below freezing
conditions .to insure that the constants used in the reduction equations are

consistent with the method initially used to calculate the relative humidity or

dew point. Most scientific and technical organizations performing
meteorological observations now compute relative humidity with respect to water
rather than ice at temperatures below 0 degrees Celsius. This procedure has
been adopted by both the Smithsonian Institute and the U.S. Weather Service
because it offers the following advantages:

1. Most hygrometers indicate relative humidity with respect to water at
all temperatures.

2. The majority of clouds at temperatures below 0 degrees Celsius consist
mainly of water.

3. Relative humidities in excess of lOO percent will not generally be !
obtained with respect to water, i

4. The majority of existing tables are based on saturation with respect

to water, t

However, there are still many psychrometric tables and certain measurement
devices that provide relative humidity data obtained with respect to ice for

below freezing conditions. If the relative humidity measurement has. been
obtained from one of these sources, then the corresponding constants must be

used in the equations for computing the partial pressure of water vapor. "-
.... t_

Th_ saturation vapor.pr.essure of waterp es, is.....obtained from _the relation



" o = (T + d)a10 It- �b/(T+ d)] (6.1)
!. S

I where T is th_ dry-bulb (normal) temperature, and a,.b, c, and d are. constants
..... whose-values are given in table 6.1. Since dry-bulb temperature is required by

each of the, input options, saturation v__por pressure is computed by the same
method in all three cases. ..

I:: If psychrometric data (dry-bulb temperature, wet.-bulb temperature, and

j pressure) are input to the program, then the remaining parameters are computed
as shown in equations (6.2) tO (6.4). First, the partial pressure of water

vapor _ found from the relation

e = (W + d)al0 [c + b/(W + d)] _ (f + gW)(P)(T - W) (6.2)
V

where T is the dry-bulb temperature, W is the wet-bulb temperature, and a, b,
C, d, f, and g are constants given in table 6.1.

The relative humidity is given by _,j

U = Cv/e s. (6.3)

The absolute humidity, It, is given by

H "_ _ e . (6.4)
T+d v

T and W are the same as previously described, and a, b, c, d, f, g, and k are
constants whose values are provided in table 6.1.

If the second input option (temperature, pressure, and dew point) is selected,

e is computed from
v

e = (D + d)al0 [e + b/(D + d)] (6.6)
v

where D is the temperature of the dew point. Relative humidity and absolute

humidity are again computed from equations (6.3) and (6.4_.

If the third option is selected, then relative humidity, temperature, and

pressure are the input parameters, and ev is computed from

= U e . (6.6)
ev- s

&.

Absolute humidity is again obtained from equation (6.4). :

Note that in keeping with Currel_t conventions for the calculation of relative

hUmidity, the constants a, b, and c r_maln the same for both above freezing and
b_lOw freezing Conditions. lloweVer, as previou._ly indicated, if the Value of U
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was obtained from a source that made the calculation using over-lee tables,

_,. then for consistency the over-ice values for a, b, and ¢ must be used for below
freezing conditions.

ii_

I Once the partial pressure of water vapor has been obtained, the modulus of
i, refraction at the moasr,._ment station can be Obtained from the familiar r-f

refractivity equation,

r o e
v

i V + 3.75 x 10 _ (T + d) 2" (6.7.)

', N x i0_ = 77..6 . d + 72.0__ + d ....................'

Another commonly used variation of equation (.6.7) is
t'

e

i ---i--P + 3 73 x..lOs " v (6.8)N x 10e = 77.6 T + d " (T + d)2"

Since the constants are given in SI.units, the values of Pd and ev must be
expressed in millibars and T must be expressed in degrees Celsius. The value
for d is taken from table 6.1 for SI units. The remaining constants used in

equations (6.7) and (6.8) are those of Smith and Weintraub. They are con- !
sidered accurate to 0.5 percent for frequencies up to 30,000 Mhz. The dry

air term, Pd' is obtained from the close approximation

Pd =P-ev" (6..9.)........................

where P is the total barometric prassuro, Pd is the dry air pressure, and

e is the partial pressure of water vapor.v

Optical refractivity for light of wavelength X is given by

77.5 Pt
N x 10_ - T (1 + 5.15 x 10 ,/_.2 + 1.07 x 10 "/Xz). (6.10)

When using equation (6.10), _ is expressed in microns. Typical values are

0.555 micron for normal white light and 0.Tfi micron for ruby laser light. 1

Equations (6.1) to (6.6) are based on a general expression of the Claperon- J

Clauslus differentlal equation that relates saturation vapor pressure,

absolute temperature, and latent heat of transformation. The expressions for

vapor pressure, absolute humidity, and relative humidity are derived in ]
reference 8. _._.

Theory relating to equations (6.7) to (6.9) is presented in detail in refer- "i
once 9.

Equatlo_ (6,10) was taken from r_ference 10, which al_o contains conslderable I

6-4 I
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_ information regarding tl_e various techniques for the calculation of atmosph¢ri¢
/' scale height,
),

i_.

t, TABLE 5 . 1, CONSTA_TS

Value of constants fOr-
)_>_' Constant - U Over water U Over ice

: SI units U,$. units SI units U,$. units
I a -4.92830 -4.92830 -0.32286 -0.32286

b -2937.40 15287.32 -2705.21 -4869.38 i

c 23.5518 32.2801 11.4816 10.0343

d 273.15 459.67 273.15 459.67

f ....6.600 X 10-4 3.595 x I0-_4 6.660 x 10-4 3.595 x 10-4

g 7.570 x 10-7 2.336 x 10-* 7.750 x 10-7 ....2.336 x 10-7

k O.21668 O.82455 O.21668 0 •82455

Variable Names

Name Description

A Constant a in table .6.1-

B Constant b in table 6.1

C ................ Constant c in table 6.1

D ConStant d in table 6.1

Dew Dew point in degrees CelSius

Dp De_ point in kelvin.s

Es Saturation vapor pressure of _ater

Ev Partial pressure Of water Vapor

F Constant f in table 6.1

6-5
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fl Constant g in tabl¢ 6.1

Ha Absolute humidity

K Constant k in table 6.1

K1 ........... First Smith and Wcintr.aub constant

K2 Second Smith and Wcintraub constant ......................................

KS Third Smith and W._intraub Constant

Nop(1) Refractivity for.white (yello_v-green) light

Nop(2)- Refractivity for..ruby laser red light

Nr_ R-f refr_._tlvity

Press To.ta! barometric pressure

T_mpd Dry air temperature in degrees Celsius

Td Dry air temperature in kelvins

Tempw Wet_bulb temperature in degrees Celsius

Tw Wet-bulb temperature in kelvins

U Relative humidity in percent

i Computational AlgOrithms
b

The algorithms used for computin 8 the partial pressure of water vapor and for
t r_f and optical refractivity are provided below.

A. Executive. Psy: Psy is a subprogram of GEOD. UpOn entry into Psy, Osel. is _.

called tO permit the operator, to select, the appropriate output device..
Subroutine Psycon assigns values to the constants in table 6.1, and Psymode
al!ows the operator .to select one of the three pOssible input..combinations,

the selection being denoted by flag L. The program then goes. tO Psyinput

to permit the operator to input the necessary psyChrometric or weather I
parameters. _Vhen the parameters have been entered, the program branches

to Psyl, Psy2, or Psy3 depending on the value of L (.I,2, or 3), In these

subroutines, all. the.psychrometr.ie parameters needed for the refractivity

algorithms are computed. The executive routine then calls Refcomp, which

computes optical and_r-f refr._ctivity, and Psyprint, which prints or _"t_

diSplsy-_ the results. The program pauses after the printing is completed.
To enter additional psychrometric o_ Weather data, the operator pr_esses C0_f

and the program returns: ,_oPsystart and subroutine Psyinput,

q

L. _ " " .......
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1. Psy : [
_ 2. GOSUB Psycon

3. GOSUB Psymodo
i,:, 4. Psystart : [
r 5. GOSUB Psyinput

6. ON L GOSUB Psyl,Psy2,Psy3
7. GOSUB Rofcomp

,_ 8. OOSUB Psyprint
_, 9. GOTO Psystart

B. Subroutine Psycon: Subroutine Psycon sets up values for tlie various
constant terms used in the psychrometric and refractivity computations.
The values of these constants can be found in the SI.column for over-water
conditions in table 6.1.

i 1. Psycon: !2. A=-4. 9283
3. B=--2937.4
4. C=23. 5518
5. D=273.15

6. F=6.6E-4

7. G_-7.57E-7

8. K=.21668

9. K1=77.6
10. K2=72

II. K3=3.75E5

C. Subroutine Psymode: Subroutine Psymode prompts the operator to select the j
input mode. If mode 1 is selected, the input parameters are wet-bulb !temperature, dry-bulb temperature, and pressure. If mode 2 is. selected,
the input parameters are temperature, dew point, and pressure. If mode 3
is selected, the input parameters aretemperature, relative humidity, and
dew point. Psymode alSo. allows the Operator to make the appropriate
salection of over-water .or over-ice constants for below freezing conditions.

D. Subroutine A: Subroutine A replaces constants used for over-water
conditions with those used for over-ice conditionswhen relative humidity
is one of the input parameters, and when its value has been computed using
over-ice constants. The same over-iCe constants are also provided in table
6.1.

1. A:I
2. A=-.32286

3. .B=-2705.21 .......
4. C=11.4816 _-

_. RETURN

E. Subroutine Psyl: Subroutine Psyl computes the saturation vapor pressure
of water, the partial pressuJ_e of _'ater vapOr, the absolute humidity, and

the relative humidity using dry-bulb temperatur:e, wet-bulb temperature,_ and
atmospherlc pressure. Step 4 is a direct implementation Of equation (6.1),



:"7"7............ 1
iii stcp 5 implements oquatlon (6.2), step 6 imptements equation (6.3), and

Stel! 7 implements equation (6.4).

i. Psyl :I
I'. 2 Td=Tempd+DIi " -
I_' 3. Tw=Tempw+D
' 4. _s=Td**Al* i0,* (C+B/Td)

$. Ev=_%v**A*I0"* (C+B/Tw) -"(F+G*Tempw) ,Pr ess*(Td-Tw)
,, 6 .... U=£v/Es
b, 7. Its=K* 1E3*Ev/Td

,, 8_ RETURNF. SubrOutine Psy2: Subroutiue Psy2 computes the partial pressure of water
vapor from dew point. Steps 4, 5, 6, and 7 are implementatlons of

equati0_s (6.1)0 (6.5), (6.3), and (6.4), respeotively.

i 1. Psy2: [
2. Td=Tempd+D

3. Dp_-De_+D
4. Es=Td**A*I0** (C+B/Td)

5. Ev=Dp**A*_.0** (C+B/Dp)
6. U=Es/Ev

7. Ha=K* 1E3*Ev/Td
8. RETURN ,.-

G. Subroutine Psy3: Subroutine Psy3 computes the partial pressure of water

vapor from relative humidity and temperature. Steps 3, 4, and 5 implement

equations (6.1), (6.6), and (6.4), respectively.

1. Psy3: !
2. Td=Tempd �3. EseTd**A*10 ** (C+B/Td)

4. Ev=U*Es

5. IIa=K*IE3*Ev/Td --
6. RETURN

It. Subroutine Refcomp: Subroutine Refr computes the modulus of refraction
for normal white (yellow-green) light, ruby laser light, and C-band r-f
energy. The FOR-NEXT_loop initiated at step 3 uses a wavelength of 0_.565
micron (the frequency Of yellow-green light) for the first pass and 0.75

micron (the frequency of ruby laser light) fOr the second pass. Step 7

implements equation (6.10) for the two optiQal passes. Step 10 implements

equation (6.7) tO obtain a refractivity value for the r-f energy ......

I. Refcomp: !

2. Td=Tempd+D _,
3. FOR N=I TO 2
4. IF N=I TIIEN Lain-.555. {

5.. IF N'-2 TIIEN Lain=.75
6. Lam2 =Lam*Lam
7. Lam4=L_m2*Lam2

8. Nop (N)=77.5*PreS s/(Td*IE6) * (I+5.iE-3/Lam2+l .07E-4/Lam4)
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9. NEXT N

10. Nrf=(Kl*Press_Ev)/Td+K2*Ev/Td+K3*Ev/Td**2/1E6
11. RETIJRN.

I. Subroutine B: Subroutine B is Used when U.S. Customary units have be_n
i selected. It aonVerts the pressure and density terms from SI to O.S.

Customary units for printout. In steps 2, 3, and 4,,pressures in millibars
", arc converted to inches of mercury by the conversion equation

_: 1 mb = 0.029529988 in. llg. Step 5 converts density in grams per cubic

k_'_ meter to denslty in pounds per cubic _0ot using the relatlon

I 1 lb/ft s = 6.24279606 x l0 s _/m _.
1. B:!
2. Ev-Ev*. 02952 9988

i 3. Ep=Ep*.029529988
4. Press=Press*.029529988

5. lla=Ila*6.24279606E- 5
6. RETURN

J. Subroutine C: Subroutine C is used when the input temperatures are in U.S.

Customary units, The subroutine converts input temperature parameters from
Fahrenheit to Celsius.

1. C:I

2. Temp=5/9*(Temp-32)
3. RETURN

K. Subroutine D: Subroutine D is used when pressures are entered it, inches of
mercury. The conversion equation Lis I mb = 0.029529988 in. Hg.

i. D:I
2. Press=Press/.029529988
3. RETURN

Program Operation ..

The psychrometric and refractivity computations are selected from the same menu
as described for other subprograms of GEOD. When the main menu is displayed,

the Operator selects RF AND OPTICAL REFRACTIVITY, and the program inunediately

requests the output device selection as described in previous programs.

Next, the program sequentially asks the operator to mare the following
selections.

SELECT UNITS ......... k"

O,=Sl '_

1 -US
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,' SELECT .INPUT. ...........

, 0 _ DRY TEMPe WET TE_IP, AND BARO PRESSURE
i = DRY TEMP, DEW POINT, AND BARO PRESSURE

_ 2 = DRY TEMP, Rl_, IIUMLq_ AND BAR0 PRESSURE

i,

_ The pro_:_ theft sequen_lally requests operatvr inputs of the three parameters
-)

selected. Entries made by the operator are in the units s¢1¢eted_Lgl or U,S.

,_ Cus to_a-:yJ.

If 0 is sOleetcd, the results are printed in the selected Units as:

TEMPERATURE (DRY) = 75.0000 DEft FAHRENIIEIT

i TEMPERAllJRE (WET) = 54.0000 DE(} FAHRF_I_IT
BARO_tETRIC PRESSURE = 29.9200 IN: fig

i SATURATION VAPOR PRESSURE OF WATER = 29.9291 IN HO
PARTIAL PRESSURE OF WATER VAPOR, = 0.2502 IN HO
RELATIVE HUMIDITY = 40.8601 PERCENT
ABSOLUTE ItUMIDITY = 0.0984910 LBM/CU I'_T
R-F REFRACtiVITY = 0.0003254
OPTICAL REFRACT (WIIITE LIGtrx ') = 0.0002691
OPTICAL REFRACT (RUBY LASER) = 0.0002669

If 1 is selected, th_ results are printed as:

TEMPERATURE (DRY) = 75..0000 DEG FAHRENHEIT.
DEW POINT TF_PERAaURE = 42.0000 DEft FAtIRENHEIT
BAROMETRIC PRESSURE = 29.9200 IN HG
SATURATION VAPOR PRESSURE OF WATER = 29.9291 IN fig

PARTIAL PRESSURE OF WATER VAPOR = 0.2705 IN HO
RELATIVE HUMIDITY = 40.8601 PERCENT
ABSOLUTE HUMIDIT_ = 0.0514954 LBM/CU FT
R-F REFRACTIVITY = 0.0003254 .....

OPTICAL REFRACT (WHITE LIGIIT) = 0.0002565

r OPTICAL REFRACT (RUBY LASER) = 0.0002532

If 2 is selected., the results are prin*.ed as:

i TEMPERATURE (DRY) = 75.0000 DEG FAIiRI_HEIT .........

l BARO_WTRIC PRESSURE = - 29.9200 IN fig
I SATURATION VAPOR PRESSURE OF WATER = 29.9291 IN HG

PARTIAL PRESSURE OF WATER VAPOR = 0.3535 IN HG
RELATIVE IIU_IIDITY = 40.0000 PERCENT
ABSOLUTE tlUMIDITY = 0.0005452 LBM/CU FT
R-F REFRACTIVITY = 0.0003153

OPTICAL REFRACT (WIIITE LIGIFI') = 0.0002691 ..... i
OPT.ICAL REFRACT (RUBY LASER) = 0.0002669 I

After the results have been printed on the output device, pressing CONT will / ,
return the I_rogram to the entry point for the next set of psyehrometriC or I
_,eather parameters. Note that if SI units were selected during the initiation,
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tompo1'atUros would have boon in deSreos Celslus, pressures in millibars, and
I!
li doxtslty in $rams par Cubic meter

!! Pr0_r_m Val idat i on

ili Partlal pressure calculations are validated against values from the Smithsonlan

iiI tableS. Refractivity values arc valldated against tables in reference 9.

Sample validation values ar_ providod in tabl_ 6.2.

" TABLE 6.2 SAMPLE REFRACTIVITY CALCULATIONS

il "

Rel Barometric Ambient Computed COmputed Computed
hum, prc_sare, temperature, es, e, N x 10_

mbar (in. H8) dog C (deg F) mbar (in. IIg) mbar (in. Hg)

68 760.0 (22.443) 34.0 ( 93.2) 63.255 (1.$73) 36.213 (1.069) 336.3

80 850.0 (26.100) 42.0 (107.6) 82.091 (2.424) 65.673 (1.939) 456.1

39 800.0 (23.624) 29.0 ( 84.2) 40.095 (1.184) 15.637 (0.462) 269.4

67 1013.2 (29.920) 23.1 ( 75.0) 29.666 (0.876) 19.878 (0.$87) 348.8

74 1017.6 (30.050) 8.9.( 48.0) 11.412 (0.337) 8.432 (0.249) 319.6

50 10.14.6 (29.960) 3.9 ( 39.0) 8.060 (0.238) 4.030 (0.119) 303.8 !

36 750.0 (22.147) -1.0 ( 30.2) 5.679 (0.168) 2.044 (0.060) 224.2 i

47 700.0 (20.671) -20.0 ( -4.0) 1.254 (0.037) 0.$89 (0.017) 218.0 i

,i
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The Baseline Refraction Cor roQti0n proMgzam

il The baseline refraction algorithms wore developed by GMD Systom_ to provide a

i refraction correction method that could be operated on a desktop comput_.r of
, moderate word length (12 dociraal digits) and still provide high accuracy

results, especially at iow or negative elevatiOn angleS. The program does not
use the conventional Snell's Law approach since that technique either fails or

/ becomes extremely inaccurate at the low elevation angles whore the majority of

the aerodynamic, tracking operations are performed. Gradient rofracti0n_is__an
i iterative technique that sequentially projects the wavefr0nt along the d

propagation path for intervals whose exact lengths are determined.by an tOptimizing algorithm wi'hin the program. At each iterativ¢ step, the velocity
gradient perpendicular to the wave travel is calculated and used to compute the 1

bending angle for that particular segment. The next sequential increment is

then propagated normal to the adjusted plane of the wavefront, i

Because of the large number of iterative steps required at low elevation
angles, the length of the propagation path segments must be optimized so that
bOth roundoff and truncatiOn errors are minimized. If the segments are too

long, the truncation errors will be excessive. If the segments are too short,
I the roundoff errors will be excessive. For a given range and angle condition,

the optimizing algorithm should be designed to select an iteration interval
that minimizes the total error.

The gradient refraction algorithms can operate at any elevation angle from -90

degrees to +90 degrees. The program has no singularity points and provides

valid results at all angles. In addition, the mathematical algorithms have

been designed to provide greater accuraCy in the angle Calculations through the
measurement and accumulation of small angles rather than large eagles. In the

Shell's law approach, the angle of incidence is measured from the vertical at

the point where the ray passes from one shell into another. This can lead to
inaccuracies as demonstrated by the following example. At a typical tracking

angle of 0.5 degree, the ang_.e of incidence is large, 89.5 degrees. On a
typical twelve-digit computer, the sine of 89.5 de.grees is computed to be
0.999961923080. However, the arcsine el' the same number is returned as

89.500000104300 degrees. This amounts to a combined error of 0.0000001043

degree in the slngle sine and areslne calculation. On the other hand, if on¢
were to take the sine of 1.23456789E-51 degree (50 zeros) on the same. computer,
the result would be 2.15472745200E-$3. However, in this case, the azcsine is

returned as 1.23456789E-51 degree, precisely the same as the starting value.

In ray tracing solutions, where Snell% Law may be reapplied as many as 500 to

50,000 times for a single solution, the sine error can become excessive, even
at moderately high elevation angles. ._n the gradient solution, the angle

calculations have been designed (I) to use trigonometric functions in their most

accurate regions, and (2) to prevent register saturation by the use of small, !

rather than large, angleS. Because of this, gradient refraction is capable of ..
delivering computational .accuracies that are several orders Of magnitude better
than those possible when using the conventional Snell's Law approach. This ,'
also permits the use of fast small angle approximations when additional
computational speed is required.

6-12



Gradient RefractiOn Solution

, General Theory

i Two pZinclpal anglos are, computed in the gradient refracti0n solution: the wave-.

front bending angle, and the earth interior angle subtended by the arc from the
,_ tracking antenna to the target. While the incremental values of these angles
_: are extremely small (typlcally 0.0004 degree for the incremental bending angle

_' and 0.0008 degree for the incremental interior angle), small angle approxl-' motions were found to cause a small but measurable difference in both range and

angle values due to the long radius involved. Thus, for the highest accuracy
solutions, the sine and tangent values are computed rather than approximated.
For faster but less accurate solutions, small angle approximations are used.
The geometry used in the gradient refraction sOlution is shOwn in figures
6.1Ca) to 6.1(c).

Figure 6.1(a) shows the first segment of a beam transmitted from a tracker at Pc.

The beam is defined by an upper ray, s Central ray, and a lower ray. The

refractivity at the midpoint of the central ray is given by Nz, the refractiv-

ity at the midpoint of the upper ray is given by Nu_, and the refractivity at

the midpoint of the lower ray is given by N1 x. The rays are shown with a sep-

aration of 0.5 meter., and Ro is the geOcentric radius vector of the tracking
site represented by the point Pc' The scale height (altitude at which the
modulus of refractivity will have decayed to 1/e of its sea-level value)
is given by hs. The height of the tracking site above sea level is given

by ho .

The distance traveled by the central ray in time At is approximately

Dx c x At (6_Ii)
=l+Nx"

The distance traveled by the upper ray in time At is approximat._ly

Du x = c x At (6.12)
1 + Nu_"

_e distance traveled by the lower ray in time At is approximately

DI_ c x At (6.13)
= 1 +Nlx"

The altitude of the midpoint of the central ray above its starting point is

Dh I = 0.5 Dx Sin Ex. (6.14)

Therefore, the refractivity at the midpoint, of the central ray is given by ,'

N_ = N0e_C'hl/hs) , (6.15)
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Figure 6.1.
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and the refractivity gradient at the.same point is given by

I,. d.Kn= h o(-h1/hs)
' dh -N° _s " (6.16)
i

Since the ray is travelitlg at an angle Et with respect to the local horizon-
tal plane, the refraction gradient across the r_y axis is given by

p\

clN_ = 0.5 x dN x cos E 1. (6.17)

:_ The wavefront bending angle, shown as Bt, is computed as

BI = azcsin (Du x -DI_), (6.18)

and the X-Y elements of the line PoP x are determined as

X_ = D sin Et and Yx = D Cos EI. (6.19)

The earth interior angle subtended by the.ray PoPx is given by

x (6.20)
_I = arctan Re + y ,

and the altitude of the point Pt above the tracking site is given by

Xl

RI - sin _i (for E greater than or equal to 0.79 tad) (6.21)

or

YI + R_
- (fOr E less than 0.79 tad) (6.22)

R_ cos _

Each iteration follows the same techniques as given above to find the bending

angle B i, the earth interior angle _i' and the length of the. new radius vector

Ri. Each succeeding elevation angle Ei+ 1 is found by subtracting each bending

angle B i and adding each earth interior angle _i to the current elevation angle

E i. This causes the elevation angle E. to be referenced to the local vertical

at the appropriate segment starting point Pi-l" The .values of earth interior

angles _i are accumulated as _total until the full measured range Dm is i

depleted by Subtracting the free-spaCe value of D for the selected incremental

time At (D = c x At) from the measured distance remaining at the start of /
each succeeding iteration. Whenthe measured distance reaches zero, the
program interpolates to find the final values of _ and R. The successive
iteration steps are diagrammed in figure 6.l(b).
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Values for corrected elevatlon (EIo), corrected distance (De), and target alti-
tude (h t) arc then determined by finding the Cartesian _lemcnts of the

i_ target point with reference tO the starting point by the simple .geometry shown

iI in fi.gure 6.1(¢). Since values, for Ro, Rfina 1, and {total are now known, the
i:_ Cartesian elements X and Y can .be found from_,:.

p, X e Rflnal x sin _total (6.231

' '_ and Y -_ (Rflna I x cos _total ) - Ro. (6.24)i

Noting the geometric relations shown in figure 6.1(0), it is now possible to

compute Elc, Dc, and h t from the followin_ relations.

Elc -_ atn (Y/X) (6.25)

Dc. = (X a + y_)x/z (6.26)

ht = Rfina I - Ro + ho (6.27) 1
Variable Names

Name Description

Aa Semimajor axis of reference spheroid

Bb Semhninor axis of reference spheroid

Bi Bending angle for ith segment

Bit Total accumulated bending angle

C Velocity of light (2.997924562E8)in meters per second 1
]

COsei Cos Ei I

D Distance trawled by ray in free space during time T

Da Accumulated arc distance traveled by ray _
!

Do Corrected target range

Dh Approximate length of vertical component of ray segment .... (i

1Dist Refraction-corrected distance traveled by central leg of .
ray segment .]
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, D1 Distance traveled by lower leg of ray in time T

i'.'_ Dm. Measured r_nse
I

Dn Refractivity gradient at the midpoint of the ray referenced
to....tka local vertical-.at the origin of the ray

Dni Refractivity gradient at the midpoint of the ray computed(

i pOrpendieular to the direction of the.ray propagation _Dt0t Accumulated equivalent uncorrected (free-space) distance
traveled by ray

i Du Distance traveled by upper leg of ray in time T

E2 Eccentric.ity squared

Ee ECcentricity of reference spheroid)

El Instantaneous elevation angle referenced to local
vertical at location of wavefront _.

.!

ElC Corrected target elevation angle ]

qEm Measured elevation

F Factor. to interpolate length.of final ray segment when

measured, distance has been depleted

Iti Spheroid elevation of tracking site

llal .Height of lower measurement station when using refractivity
values from two stations to determine scale height

Ila2 lteight of higher measurement station when using refractivity
values from two stations to determine scale height

Hi Average instantaneous height of the ray segment above
the starting elevation

lls Atmospheric scale height

Ni Average refractivity index over the center l_g of the ray
segment

L

N1 Average index• of refraction over the upper leg of the ray (

Segment !No Station refractivity

Nol Rcfractivlty at lower station when values from two stations
are u_ed to compute scale height
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No2 .. Refractivity at higher.station when values from two stations

i. arc used to compute scale height
i

";' Nsl Sea-level _efract ivity(

, Nu Average index o£ refraction over thO uppJi leg of tho ray
segment

V. Num Index showin 8 number of iteration cycles completed

_ Pi Earth interior angle subtended by the ith..ra£

i Pit. TOtal accumulated earth, interior angle ,-

R£ Instantaneous earth-centered ray height.

Scalehl _Ianually entered value of scale .height

Sflag Flag indicating which At selection was made ]

Sinei sin Ei

T Incremental propagation tim_ used in Computations

To Incremental propagation tlme.optimized to reduce roundoff
and truncation errors for various measured ranges

X ltori_-ontal component of ray segment referenced to the
local vertical of the waVefront _

Y Vortical component of ray segment referenced to the
local vertical of the wavefront

Computational Algorithms

The essential algorithms used in the gradient refraction program are presented
below.

A. 0dref executive..subroutine:,. Gdref controls the various calls needed for

inltlaliZation, data entry, Computation, and display.

I.. GOSUB Gmode _.
2. GOSUB Ginit

3. Gdentry: I /
4. 60SUB Entry
5. GOSUB Compute
6. GOSUB Elc

7. _OSUB Print I
8. GOTOGdentry
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, B. Subroutine Gmode: Subroutine (]mode requests operator selection of

'_ operating modes, tracking source, and iteration intervals. It produces the_

_i various menu statements that arc fully described in the PrOgram Operation
section. These are straightforward INPUT statements and are omitted here

P' to avoid Unnecessary duplication. The subroutine als0 provides average
earth radius Values (Re)for the various tracking site selections.

_,i C. Subroutine Ginit: Subroutine Ginit initializes elevation, range, and earth

i'_ radius parameters and sets up the selected At interval to be used in the

iterations. At step 1 the radian mode is set. At step 2, the constant C
is set equal to the free-space speed of light, in steps 3 through e,

_ starting values for the succeeding iterations are assigned the input values
of H (tracking site elevation above sea level), Em (elevation measured in

degrees), and Dm (distance measured in meters). Re is the ©a_._average
radius at the tracking site. In step 8 the varlables used to acc_unulate

incremental values through the integration process are initialized tO 0.In step 9, the time of travel (T) for each ray is initialized to TO, an
optimum value selected to reduce the combined effects-Of roundoff and
truncation error. If a faster mode has been selected, as indicated by the
speed flag (Sflag), then T may be assigned values of 2 To, 5 TO, I0 To, 25
To, or 100 To, which will decrease the Computation times by factors of 2,

5, 10, 25, or 100, respectively. This increased speed increases the amount
of truncation error (_rror arising from the fact that the curved ray path
is being approximated by longer straight-line rays) and provides a less
aCCurate solution.

I. RAD

2. C=2.997924562E8
3. n i=H

4. Ei=Em*2*PI/360
5. Di=Dm

6. Ri=Ro

7. F=I

8. Ra=Ea=DafB it=Pit=Num_Dto tfXto tfYto t-_Dh=0
9. T=To

10. IF Sflag=2 2qlEN T=To*2
11. IF Sflag=3 THEN TfTo*5
12. IF. Sflag=4 THEN TffiTo*10

13. IF Sflag=5 THEN T=To*25
14...IF Sflag=6 THEN T=To*IO0

15 .... ON Hsflg GOTO Hsl,Hs2,Hs3
16. RER_JRN I

D. Subroutine ilsl: Subroutine Hsl computes the scale height (reciprocal of

the expOnential decay factor) f0r use in. the refractivity equation. The
algorithm uses a 10-step iterative process during which an asstm_ed initlal
scale height of 6600 meters (based on the year-round average) is refined by

use o_ the curr_nt station refractivity measurement. A value of sea-level

refractivity iS also Computed. Steps 4 and 6 are an implementation of the

HSI equations given On page 4 of reference I0. This is the same method
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employed by Goddard Spacefligh_ Center to compute IIs values that arc
tabulated for use by _chnson Space Center.

1. tIsl: f
2. Hs=6600

_ 3. FOR N=I TO 10
4. NsI=No*EXP(IUIIs)

" 5. Hs=lOOO/LOG(Nsl/NsI'7.32E"6*EXP(5577*Nsl))

: 6. NEXT N
_" 7. RETURN

: E. Subroutine Hs2: Subroutine Hs2 assigns an operator-selectable value of
scale height (Scalehl)to Hs and computes sea-level refractivity based on
that value. This solution assumes that scale height is known from
radiosonde measurements or other means.

1, Hs2: I2. Hs--Scalehl

3. Nsl_No*EXP (tl/Hs)
4. RETURN

F. Subroutine Hs3: Subroutine Hs3 computes the values of scale height and sea-
level refractivity from refractivity measurements made at two known
elevation points.

1. tls3: I

2. Hs=(IIa2-Hal)/LOG(Nol/No2)

3. Nsl=Nol*EXP(Hal/IIs)
4. RETURN

G. Subroutine CyCle: Subroutine Cycle performs the iterative solution that

computes the final values of bending angle, internal earth angle, and ray
height. The variable Num counts the number of integration steps that have _,

been performed. Ei is the instantaneous elevation angle of the ray as
measured from the local horizontal at the start of the interval. At

step 4, the free-space distance which would be traveled by the ray in time
T is computed. C is the velocity of light. At .step 5, the approximate
increase in altitude to the midpoint of the ray is computed. In step 6,
the altitude of the midpoint of the ray is added to the starting altitude
value, and the sum is used to compute the average refractivity (eq. (6.15))
for the specific ray segment. In step 7, the value of dn/dh (equation
(6.16)) is computed by combining equations (6.15) and (6.15). Step 8
implements equation (6.17), and steps 9 and 10 compute the values of the
average modulus of refraction for the upper and lower ray segments (fig.
6.1). At step 11o the meastured distance remaining is reduced by the
equivalent free-space distance traveled by the ray segment. If some _"
measured distance remainS, the program branches to step 15. Otherwise, the (
program interpolates (step 13) to obtain a factor which must be applied to
the last segment ealculatlons to proportion the actual distance traveled by
the last ray segment. This is accomplished in step 14 where the equivalent .......
free-spaCe distance is multlplled by the computed factor. Jn.step 15, the 4

actual distance trammeled by the _entral ray is computed, and in steps 16 I1
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and 17 this value is adjusted to yield th0 distanc0s traveled by the upper
i and lower segments of the rny (fig. 6.1). Da, the actual, acctunulated
!i distance traveled by the _cntral ray, is increased by the incremental
_ travel of the Ce1_tral ray during this segment frame. In step 19, the

bending angle for the current segment is ,_omputed and added to the total
_ accumulated bonding an$1e (step 20.). Note that sin0e the Separation

between the upper and lower segments is taken as being 1 meter, the actual
_ bending anglo relation (tan Bi = oppoSite/adjacent) has a denominator of 1,

and the fact that Bi is a very small angle allows the substitution of,El
for_tan Bi, which simply yields Bi = Du - DI. The X and Y components of
the ith ray segment are computed in steps 21 and 22, and these values are
used in step 23 to calculate the central angle (Pi) subtended by the ith

segment. In step 24 the incremental angular contribution of the ith segment
is added to the total accumulated eat'th interior angle Pit. A new value

for Ri is then computed from the simple trigonometry shown in figure 6.1,
which is implemented in steps 26 and 27. Two methods of computing Ri are
provided., and the method that provides the greatest accuracy for the
specific Ei value is selected by the program logiC. Hi, the altitude of
the ray above the tracking site, is updated in step 29, and the total
consumed, free-space, (or. measured) distance is updated in step 30. If the
measured distance remaining (Di) is greater than 0, the program recyles to

step 1. The sam_ process is repeated until the.measured distance is
consumed, at which point the program returns to the executive routine.

1. Num=Num �2. Cosei=COS(Ei)

3. Sinei=SIN(Ei)

4. D=C*T
5. Dh_ . 5*D'Sine i
6. Ni=Ns I*EXP (- (Hi+Dh)/Hs)
7. Dn=-i/lls*Ni
8. Dni=. $*Dn*Cosei
9. Nu=l+Ni+Dni
i0. Nl=l+Ni-Dni

Ii. DI=Di-D

12. IF Di>0Tn_N 15
13. F=(D+Di)/D
14. D=F*D
15. Dist=D/(I+N£)

15. Du=D/Nu

17.. DI=D/NI
18. Da=Di_t+D_
19. _i=Du-Dl

20. Bit=Bit+Bi

21. Y=Dist*_£nei

22. X=Dist*Cosel

23. Pi=ATN(X/(Ri+Y) ) r
24. Pit=Pit+Pi ,,
25. Ei=Ei-Bi+Pi

26. IF Ei>=.79 _IEN Ri=X/SIN(Pi)

27. IF Ei(,'19 TIIEN Ri=(Y+Ri)/COS(Pi)
28. Hi=Ri-Ro

.... 'i
t
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30. IF Di>0 _]IEN 1 ......
I_' 31. RETURN

P' H. Subroutine Elc: Subroutine Elc computes corrected elevation and corrected
range of the target. Step 1 set_ the degree mOde. Step 2 computes the

_, radian to degree conve_sion factor (Dcon). Steps 3 to 5 convert the total
interior angle, total bending angle, and final elevation angle to degrees .....

"_ Dx and Dy, the total X and Y components of the target position as shown in -

figure 6.1, are computed in steps 6 and 7. A special condition for a 90-
degree corrected elevation angle is provided in Steps 8 and 9. For all

i other cases, the corrected elevation angle and corrected distance are
computed from the simple trigonometric relationships shown in steps 12 and ....

14. Default conditions are set for these calculations to prevent real• precision overflows at elevation angles approaching 90 degrees. The
program then returns to the main executive subroutine.

l. DEG
2. Dcon=180/PI
3. Pit=Pit*Dcon
4. Bit-_Bit*Dcon
5. Ei=Ei*Dcon
6. Dx=Ri*SYN(Pit)

7. Dy=Ri*COS(Pit)-Zo
8. IF Dx<>0 'I_HEN11
9. Elcffi90

10. GOTO 14

11. DEFAULT ON

12. Elc-_ATN(Dy/Dx)
13. DEFAULT OFF

14. Dc=SQR(Dx**2+Dy**2)
15. RETURN

I. Subroutine Print: Subroutine Print causes the various input and output
parameters to be displayed or printed. The format of the display is given
in the Program Operation section, and is therefore omitted here to avoid
duplication.

Program Operation

The gradient refraction program is a subprogram of GEOD. When GEOD is run, the
operator is asked to select the units and datum/spheroid reference applicable
to the computations to be performed. After these selections are made, the. _--

maste_ menu selection is displayed. One of the menu items is GRADIENT (
REFRACTION. The operator makes the appropriate numerical entry and the main
program calls subprogram Gdref,

Upon entry into Gdrefo the Operator is prompted to make-several simple
selectionS.

A. Output device SelectiOn
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SELECT OUTPUTDEVICE .....
! .

,_' 0"CRT
i'

I: 1 • THEIL PRINTER
;. 2 = LINE PRINTER ..........

B. Tracking site selection

SELECT TRACKINGSITE
1

1 ffi 3SC*MODEL
2 = FPS-.16 (34)
3 = FPS.-16 (38)
4 -- FPS-16 (41)
S = ELY HAIR SYSTEM

i, 6 = _fANUALENTRY..At this point the operator .will select a prestored site or manual entry.
If a manual entry is used, the program will sequentially ask for site
latitude, site longitude, and site spheroid elevation. The latitude
parameter is used to compute an average earth radius for the locale of the
tracking site. This earth radius is then increased by the amount of the
sttees spheroid elevation, and the combined radius becomes the reference
value (Re) used in the refraction equations.

C. Entry of refractivity and scale height values

The operator is next asked to select between entry of a single station
refractivity value or two values from sites at different elevations. This
option was added to the program to permit refractivity taken at any one of
the local radar sites to be used in conjunction with refractivi.ty values
obtained by telemetry from the weather station at Sentinel Peak (or at
other similar future • sites). The operator is prompted as follows:

MAKESELECTION

0 = ENTRYOF SINGLE REFRACTIVITY VALUE
1 _ ENTRYOF TWOREFRACTIVITY VALUES (COMPUTESCALE HEIGHT) ,j

If 0 is selected, the Operator is asked to enter the value of station
i refractivity to be used. If I is selected, the operator is sequentially

prompted as follows: ]
1
:J

ENTER VALUE OF LOWERELEVATION STATION REFRACTIVITY
t

ENTERLOWERSTATION ELEVATIONIN METERS _,_

I/NTERVALUE0F HIGHER ELEVATIONSTATION REFRACTIVITY {

1_ HIGHER STATION ELEVATIONIN _IETERS
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The program uses the two values of zefractlvlty and the two station
elevations to Calculate the scale height to be used in the computations to .............

) follow. The program then proeoed_ to step D b_iow.

II,

[ lind O.boon selected, the operator would have boon roqulred tO sequentially

i, respond to the follOwing prompt messages:

), ENTER VALUE OF STATION. REFRACrZvITY

i IF MEASUREMENT STATION IS SAME AS TRACKING SITE PRESS OONT

IF _ASUREMEb_ STATION IS DIFFERENT ENTER ELEVATION IN (METERS)

The parentheses above indicate that the length units requested _ill be
these selected by the operator at program initialization.

The followin_, selection would then be required:

MAKE SELECTION

0 _-COMPUTE SCALE HEIGHT FROM RI_RESSION EQ

I = ,MANUAL ENTRY OF SCALE HEIGHT TO BE USED

2 -- PRECOMPUTED (STOR]_) VALUE OF SCALE.REIGHT TO BE USED

D. Incremental mode selection

At this point the operator is asked to select from seve cal _n_-_nen_e_
modss that are available for computations.

_E SELECTION

0 = HIGH ACCURACY MODE (EXTREME ACCURACY BY LOW SPEED)
I = VARIABLE INTERVAL (HI ACC AT LOW ANGLES BUT FASTER AT HI ANGLES)

2 = MODERATE SPEED S(I_UTION (2 TIMES.FASTER THAN MODE 0)

3 = HIGH SPEED SOLUTION (5 TIMES FASTER THAN _DDE 0)

4 = VERY HIGH SPEED SOLUTION (i0 TIMES FASTER THAN _K)DE,.0)

5 = EXTRF24E SPEED SOLUTION (25 TIMES FASTER THAN MODE 0)

6 -_ULTRA SPEED SOLUTION (100 TIMES FASTER THAN MODE 0)

Only mode 0 retatn_ full accuracy. All other solutions sacrifice varying
degrees of accuracy for speed. Generally, for baseline work, mode 0 would
be selected. For faster response or real-time applications, one of the
other modes would be used, with the specific selection depending on the
speed of the processor and the time available _!thln _ .... '-_'-_

E. Exttry Of measured values

At this point, the program is ready to accept keyboard-entered measurement
values. The following prompt messages appear sequentially on the CRT. The
Operator responds to each by entering the appropriate values.,
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ENTER VALUE OF E, MEASURI_ IN DEGREES

b ENTER VALU_ OF R MEASURI_ IN (_TERS)

i

! The parentheses indicate that the range data will be requested in the

_ currently _e!ectcd units, llowever, once entered, the input units are
_onv_,_t_ to radians and meters for use in the iteration sequence.

mx

t F. Output

i When the iterations have been completed, the values of bending an_le,
central angle, and the magnitude of the final radius vector are used to
compute corrected elevation, corrected range, and target altO.rude above sea
level. These are displayed as:

SL REFRACTIVITY .0002800

I MEAS REFRACTIVITY .0002513

SITE REFRACTIVITY .0002513

) SCALE HEIGHT 7515.0531 _.TERS

I ELEV MEASURED . 3160 DEGREESRANGE b_ASUR_D 146400.93 METERS

CORRECTED EL .1703 DEGREES

CORRECTED RNG 146364 .04 )_ETERS

TARGET ALTITUDE 2934 METERS

NO ITERATIONS 186

CENTRAL ANGLE 1.3211 DEGREES
BENDING ANGLE 0.2800 DEGREES
IMPINGING ANGLE 1.3570 DEGREES

After the results have been printed on the output device, pressing CONT

will return the program to the entry point so that the next set of
refraction data can be entered.

Program Validation

To validate the computational accuracy of the gradlent refraction solution,

result_ were compared with those from the 3SC ray-tracing prOgram described in
reference 9. It should be. noted that the JSC results were obtained on a CDC _-

t.

Cyber 74 computer using double precision (28 decimal digits). In those /
Computations. 50,000 iterations were used for measured elevation angles of less

than 0.5 degree, 5000 iterations were used for measured elevation angles from

0.5 to 2.5 degrees, and 500 iterations were used for higher elevation angles.
The. Solution was based on a Shell's Law approach.
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In general, the gradient refraOtion solutions asree with the _SC results to
_ within apprOximatley one or two ton-thousandths of a degree in anglo and one or

two hundredths of a meter in range. Actual comparison values for elevation
ii! anslos of O, 20, 45, and 90 deSroes, and ranses from 10 to 15,000,000 motors

i, are presented in tables 6.3 to 6.6.
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TABLE 6.3. COMPARISON OF 3SC AND GMD RANGE AND ELEVATION VALUES
FOR ELEVATION ANGLE OF 0 DEGREES

.i

_: (No.= 0.000386, _Re : 6378166 motors)

I,
R measured, 3SC Elc, GMD Elc, ISC Do, Gb_) Do,

m. de8 de8 m m

't 15,048.27 -0.0295 -0.0293 15,042.46 15,042.47

_ 67,15"- .73 -0.1308 -0.1309 67,127.06 67,127.06
105,826.84 -0.2043 -0.2042 105,786.97 105,786.96
148,875.73 -0.2834 -0,2833 148,820.92 148,820.92

r 208,511.69 -0.3864 -0.3864 208,438.28 208,438.28
321,912.52 -0.5549 -0.5549 321,812.18 321,812.18

i 442,467.951 -0.6906 -0.6904 442,351.26 442,351_27

I 603,994.40 -0. 811'_ -0.8118 603,868.82 603,868.83910,793.99 -0.9322. -0.9322 910,663.72 910,663.73

1,250,390.S0 -0.9970 -0.9970 1,250,258.08 1,250,258.09
1,730,424.76 -1.0452 -1.0452 1,730,290.74 1,730,290.75

2,698,884.88 -1.0903 -1.0903 2,698,749. _8 2,698,749.37

3,835,186.08 -i._142 -1.1142 3,835,049,78 3,835,049.77

15,214,63,0.95" -1.1566 -1.1566 15,214,493.25 15,214,493.06"

* Total Jsc iterations' 5b_oo0. Tots1 G'MI)i_erations- 3028 ................... i

T aL ,6.4. COISON OFJSCAND RANO .ANDELEVATIONVALt S
FOR ELEVATION ANGLE OF 20 DEGREES

(No _-0.000386, R0 = 6378166 meters)

R messured, ISC Elc, G_9) Elc, ISC Do, Glad Do,

m des de8 m m

29.25 19.9999 20.0000 29.24 .... 29.24

584.94 19.9989 19.9992 584.72 584.72

1,462.19 19.99'74 19_9976 1,461.65 1,461.65

2,923.82 19.9949 19.9953 2,922.79 2,922.79 ,.
5,845.29 19..9904 19.9907 5,843.39 5,843.39

14,594.01 19.9795 19.9798 14,590.28 14,590.28

29 o116.97 19.9678 19.9679 29 o111.71 29 o111.71

57,926.86 19_9561 19.9562 57,920.73 57,920.71

1_2,482.17 19.9465 19.9466 142.475.86 142,47 5.86

277,75_t.94 19.9432 19.943 3 277,747.63 277,747.63

$30,838.77 19_.9415 19.9417 530,832.46 530,832.47 _'-
1,195,203.99 19.9405 19.9407 1,195,197.68 1,195,197.69 ,'
2,124,555.53 19.9401 1_.9403 2,124,549.23 2,124,549.23
13,066,065.17 19.9397 19.9399 - 13,066,058.87 13,066,058.87

!
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b TABLE 6.5. COMPARISON OF JSCAND GMD RANGE AND ELEVATION VALUES
FOR FJ_EVATION AN(_LE OF 45 DEGREES

i (No = 0.000386, Re - 6378166 meters)

_ R measured, XSC Elc, O_ Elc, ffSC De, G_fl_ De,
m deg des m m

I 14.15 45.0000 44.9999 14.14 14.14
i! 282.95 44.9996 44.9998 282.84 282.84

707.35 44.9990 44.9-993 707.09 707.09
1,414.65 44.9981 44.9984 1,414.15 1,414.15
2,829.08 44.9965 44.9967 2,828.16 2,828.16
7,071.03 44.9925 44.9927 7,069.22 7,069.22

14,136.52 44.9882 44.9884 14,133.98 14,133.99

28,251.04 44.9840 44.9841 28,248.06 28,248.08
70,464.56 44.9804 44.9805 70,461.50 70,461.52

140,398.84 44.9792 44.9792 140,395.77 140,395.77

278,769.33 44.9786 44.9786 278,766.27 278,766.26
683,321.00 44.9782 44.9784 683,317.94 683,317.95

1,329,601.05 44.9781 44.9783 1,329,597.99 1,329,598.00

11,236,158.88 44.9780 44.9783 11,236,155.82 11,236,155.63

TABLE 6.6. COMPARISON OF _SC AND GMD RANGE AND _EVATION VALUES
FOR ELEVATION ANGLE OF 90 DEGREES

(No = 0.000386, Re = 6378166 meters)

R measured, JSC Elc, G_fl) Elc, _SC De, G_) De,
m deg de8 m m

10.00 90.0000 90.0000 10.00 10.00

200.08 90.0000 90.0000 200.00 200.00

500.18 90.0000 90.0000 500.00 500.00

1,000.35 90.0000 90.0000 1.000.00 1,000.00
2,000.65 90.0000 90.0000 2,000.00 2,000.00
5,001.28 90.0000 90.0000 5,000.00 5,000.00

10,001.80 90.0000 90.0000 10,000.00 10,000.00
20,002.65 90.0000 90.0000 20,000.00 20,000.00
50.002.17" 90.0000 90.0000 50.000.00 50,000.00

100.0C2.17" 90.0000 90.0000 100.000.00 100,000.00

200,002.17" 90.0000 90.0000 200 000.00 200,000.01 -"

500.002.17" 90.0000 90.0000 500 000.00 500,000.02 i,
1,000 002.17" 90.0000 90.0000 1,000.000.00 1,000,000.04

10,000,002.17" 90.0000 90.0000 10,000,000.00 10,000,000.10

* The JSC atmosphere is terminated at 50 kilometers whereas the expon-
ential atmosphere Used in the GMD.solution continues to exist in minor ....
amounts above the 50-kilometer level.

6-28



_ CHAPTER 7

p:! DATUM CONVERSIONS AND GENERATION OF DATA SHEETS
i,

'_ This chapter deals with the calculation of coordinate data with respect to any
_ of the spherOid/datum models contained in the program. It also describes the

ii_ program used to prepare horizontal control data sheets f_ survey points,
calibration points, runway endpoints, and other locatior, s in the Edwards
horizontal control network.

i Datum Conversion Theory

The orientation of a rigid body is defined by six quantities: three linear
translational quantities and three angular or rotational quantities. If the I

rigid body is the earth spheroid, then two additional quantities are also
required to establish the spheroid position of any surface point. However, by
using suitable datum definitions, this number can be reduced. For example, if
the axes of the spheroid are defined to be parallel to the earth's axis of
rotation and to the meridian of Greenwich, then only five constants need be

g iv en.

In this document, all datums are referenced to WGS-72 and are considered to
have their coordinate frames aligned with, although spatially offset from, the
WGS_72 E-F-G triad. Recent satellite data indicate that some small

discrepancies exist in the alignments of coordinate axes, especially with the
older datums. However, for aerodynamic tracking applications, it is common
practice to assume that alignment errors between the newer datums are small
enough that only the translational corrections need be considered.

In the datum conversion program, the position of a starting point is

established by knowing its latitude, 2ongltude and spheroid elevation in a
given spheroid/datum reference. Knowing the spheroid parameters, the E-F-G
coordinates of the point can be easily computed with respect to the same datum
reference. Next, three translational corrections (du2, de2, dw2)between the
new datum and the WfiS-72 origin are subtracted from the three translational
corrections (dul, dul, dwl) between the original datum and the WGS-72 origin to
obtain the translational corrections (du, de, dw) between the original and new

datums. These corrections are applied to the E-F-G coordinates relative to the
Original datum to obtain the E-F-G Coordinates of the point in the new datum I

(E2 = E1 + du, F2 = F1 + de, G2 = G1 + dw). Finally, the latitude, longitude, _!
and spheroid elevation Of the point in the new datum are obtained using any one

of the four off-Spherold coordinate determlnation programs described in _"

chapter $. / |

Again, it should be emphasized that the simple addition of translati0nal
elements neglects any minor tilt which may exist between the datums. However, |

since it iS the common practice among range groups tO Use only the |
translational termS, this procedure has been followed in the baseline

algorithms so that the results will agree with DMAC and U_CG$ data.



P_r

Datum Conversion Program
___ _ • _ ,

Varlable-_Names

" Ne_ne Description

Aa Length of semimajor axis of selected reference spheroid
m\

_l_! Bb Length of semiminor axis of sel_ted reference spheroid

! D1 Number used to identify the starting datum

D2 Number used to identify the ending d_tum

i Du Combined E translation frOm starting to ending datum

l Dul E translational component of starting datum
| Du2 E translational component of ending datum

Dv Combined F translation from starting to ending datum

Dvl F translational component of starting datum

Dr2 . F translational component of ending datum

Dw Combined G translation from starting to ending datum

Dwl G translational component of starting datum

Dw2 G translational component of ending datum

E01 E value of point in starting datum

E2 -_Square of the eccentricity of the reference spheroid

Ee Eccentricity of the reference spheroid

En Normalized E vector used in Lagrange solution

FO1 F value of point in starting datum

COl G value of point in starting datum

ComputatiOnal Algorithms

The essential algorithms used in the datum Conversion subr_utine are presented
below:

A. Datumconv subroutine: The DatumcOnv subroutine is the major executive
subroutine containing the datum conversion algorithms and Calls.
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1. _Datumconv: !

2. Cal! Spher(D1,Aa,Bb,E2,Ee,Du1,Vvl,I)wl)

3. GOSUB Uwhtoef8
4. Call Spher(D2,Aa,Bb,E2,Eo,Du2,Dv2,Dw2)
5. Du_Dul"Du2
6. Dv=Dvl-Dv2
7. I)w_DwI-Dw2 ....
8. E01-=E

il 9. F01_

'. 10. GOI_-G

' 11. Enffi(E01+Du)/Aa ..'

12. Fn_(F01+Dv)/Aa

' 13. Gn=(G01+Dw)/Aa

14..GOSUB Lagrangeterm

i 15. END

B. Subroutine Spher: Subroutine Spher is used to obtain the parameters for
the selected spheroid datum. An index number D10(i) indicates the datum
number. The other terms in the calling argument are length of the

semimajor axis, length of the semiminor axis, eccentricity squared,
eccentricity, and the three delta vectors.

C. Subroutine Lagrangeterm: Subroutine Lagrangeterm accepts the normalized E,

F, and 6 coOrdinates of the target point in the selected spheroid/datum ]'
model and returns the latitude, longitude, and spheroid elevation of the
point. This subroutine is fully covered in chapter 5.

Program Operation

The datum conversion routines• are a subroutine of GEOD. When GEOD is run. the

operator selects DATUM CONVERSION during program initialization. The following
dlsplay sequence prompts the operator in making the necessary inputs.

A. Output device selection

SELECT OUTPUT DEVICE

0=CRT

I = THEI_IAL PRINTER . !
2 = LINE PRINTER i

q
B. Datum selecti0n !

tf



_i_
!

b SELECT STARTING DATUM

_ 1 = NAD 1927/CLARKE 1866 4 = WGS-72
j'

', 2 = MERCURY/FISHER 1960 5 _ b_RCURY/FISIIER 1968
_ 3 = KAULA 1961 6 = NWL-gE

,_ 7 = ADINDAN/CLARKE 1880 21 _ SA0-66

_: 8 - ASCENSION (ASTRO-58)/INTNL 22 _" SA0-,67

. 9 = AUSTRALIAN NATIONAL 23 =-SA0-69
I0 = CANTON IS (ASTRO-66)/I_fNL 24 = SAO"73
11 = EUROPEAN (ed)/INTNL 25 = S AFRICAN 19SO/CLARKE 1880

12 = GREAT BRITAIN 1936/AIRY 26 = SOUTH AMERICAN 1969

13 = GUAM 1963/CLARKE 1886 27 = SOUTH AFRICAN/FISHER 1960

14 =-INDIAN (Id)/EVEREST 28 = TOKYO (TD)/BESS_I 1841

15 = JOHNSON IS (ASTRO-61)/I_L 29 = VANGUARD/HOUGH

16 = NANKING 1960/I_L 30 = WAKE IS (ASTRO-52)/HOUGH
17 = GE_i-6 31 = WAKE-ENIWETOK 1960/HOUGH
18 = NWL-gC 32 = WGS-60

19 = NWL-9D 33 = WG_-66

20 _-OLD HAWAIIAN (OHD)/CLARKE 1966

The operator makes the appropriate numerical entry and presses CONT. The
program then displays

SELECT ENDING DATUM

along with the same menu of datum/spheroid models. Again the operator
makes the appropriate numerical entry and presses C0_.

C. Entry of coordinates of point to be Converted

ENTER (CLARKE 1866) COORDINATES

ENTER GEODETIC LAT AS D.MS (EG. 35 43 24.6789 -_35.43246789) ...............

ENTER GEODETIC LON AS D.MS (EG. 117 54 38.1243 -_117.54381243)

ENTER ELEV ABOVE SPHEROID IN (_TERS)

_e items in parentheses will vary dependln 8 on the operator se|ections of _

starting dat,m and englneerln8 units.

D... Output

DATIDI, (_IERCURY) EARTH MODEL: (FISHER 1960) ..... _,

te

GEODETIC LATITUDE = 34 57 39.4537 (34.96095937) (0.610183851)
GEODETIC LONGITUDE = 117 54 40.0495 (117.91112486) (2.057937354)
SPIIEROID ELEVATION _ 796.04 51ETERS

1
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Prosrn_ VaLidation

I:- Validation of the datum Conversion subroutines i_ accomplished by comparing

i computed results with those available from DMAC, USCGS, or NASA publleatlons.
Computed results for the various datum/sI_heroLd models are provided in table
7.1 for a point at 35 N and 118 W in the Cla_I_o/NAD m0del.

V' TABLE 7.1. CO_._ARISON OF CLARKE 1866/NAD AND O_iER.DATUM COORDINATES

Ii' (Clarke coordinates of point are 35 N, 118 W,__%nd II= 500 meters)

Latltude, Longitud_ o Spheroid cloy,
Datum/Spheroid d-m-s d-m-s m

Clarke 1866/NAD 35 00 00.0000 118 O0 00.0000 500.00

Mercury/Fisher 60 35 00 00.4945_ 118 00 01.9504 508.95
Kaula/Kaula 61 35 00 00.0056 118 00 03.4295 480.89
WGS-72 34 59 59.8136 118 O0 03.6724 489.09

_4ercury/Fisher 68 34 59 59.7516 118 00 03.3110 484.32
NWL-8E 35 00 00.0997 118 00 03.7443 483.44

Adlndan/Clarke 1880 35 O0 06.5875 117 59 58.8616 290.91

Ascension/Intnl 35 O0 01.7011 117 59 54.5370 222.14

Australlan Nail 34 59 57.6970 118 00 00.1838 304,04

Canton Is/Intnl 35 00 14.8609 118 00 19.2199 392.61

European/Intnl 35 00 08.4047 118.00 02.6547 232.20 .......

Great Britaln/Airy 34 59 44.9009 118 00 18.7063 846.15
Guam/Clarke 1866 35 O0 04.9542 118 00 04.9244 145.98

Indian/Everest 34 59 34.0183 117 59 56.5673 1741.11

_ohnston Is/Intnl 35 00 07.5024 118 OO 11.4494 418.35

Nankin 8 60/Intnl 35 O0 09.7887 118 00 06.0328 -i0.01
GEM-6 35 00 00.1.463 118 00 03.7095 485.04
NWL-9C 34 59 59.803,1 118 00 03,9324 484.29

NWL-9D 34 59 5.9.7834 118 00 03.6125 486.89

Old Hawaiian/C1 1866 35 00 16.0369 118 00 10.6210 430.54
SA0-66 34 59 59.6864 118 00 03.8584 466.06

SA0-67 34 59 59.9965 118 00 03.7747 490.36

SA0-69 34 59 59.8593 118 00 03.7725 492.02

SAO-73 34 59 59.6949 118 00 03.9302 489.83

S African/Clarke 1880 35 00 16.9365 117 59 56.7560 696.68

S American 69 35 00 26.1387 118 00 00.9360 726.92

S Asia/Fisher 60 35 00 •00.9467 118 00 05.5329 429.74

Tokyo/Bcssel 1841 34 59 32.6510 •117 59 49.2464 1138.55

Vansuard/llough 35 00 00.4042 117 59 59.9423 499.43
Wake Is/Hough 34 59 57.1048 118 00 14.3399 262.30
Wake-Eniwotok 60 35 00 01.6636 118 00 06.3129 501.51 ,,

WGS-60 34 59 59.9382 118 00 04.1104 510.00 e

WGS-66 35 O0 00.0887 118 O0 03.6865 489.16 '



Data.,Sheet Proparatlon

The data sheet subroutine _s simply an executive program that sequentially
calls the various other subroutines and subprograms previously described. For
this reason, the coding of the individual subroutines is not repeated here.
llowever, the general sequence Of operations and the operating iustructiona_are
provided.

The data sheet subroutine is Intended to prepare CRT or hardcopy listings of

horizontal control data referenced to any of the many control points generally

used by the ATR. The program is designed to accept a manually entered control
point or to sequentially read each control point from a master survey _ile. In

i either case, the geodetic latitude and longitude of the point must be entered

i or read in Clarke 1856/NAD coordinates.

The program then provides an output listing which consists of the name of the
station (if named), the NAD coordinates of the point in dms, deg, and radian
formats, the California zone 5 and zone 7 Lambert coordinates of the point, and
the NAD E-F-G coordinates of the point.

Next, depending on the operator selection, the program will display or prin*.
the geodetic and E-F-G coordinates of the point in other selected datums.

Also, if selected by the operator, the program will display or print the range,
azimuth, and elevation to all nearby survey points. This can be in either of
two operator-selectable formats which are described in the program.ope.ration
section below.

In making the necessary computations, the program makes use of the Lambert
subroutines, the E--F-G subroutines, the datum conversion subroutines, and the

var£ous angle and distance routines described in earlier Chapters.

Program .Operation

Upon entry into GEOD, the operator is asked to select the operating mode. To
prepare a data sheet the operator enters the number corresponding to DATA
SHEET. The r_maining operator entries are shown below.

A. Output device selection

SELECT OUTPUT DEVICE

1
0=CRT i

I = THER_L%L PRINTER i
2 -_ LINE PRINTER t

L.

B. Station selection f

0 = $IANUAL ENTRY OF STATION

1-= AUTO_IATIC ENTRY (ALL STATIONS)
2 -- ENTRY oF FILE STATION

7_6 ....
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If manual entry is selected, tha, followln8 operator inputs are rOquested: _
|

i:, ENTER STATION NA_fl_

_ ENTF_RSTATION NAD LATI2UDE IN D.MS FORM

p_ ENTER STATION NAD LONGITUDE IN D.Mfi FORM

i_ _PDER ELEVATION ABOVE SEA LEVEL IN (METERS)
ENTER GEOID SEPARATION IN (METERS)

If automatic entry is selected, the program sequentially reads One station

i after ._nother from the survey file and prepares a separate horizontal datasheet for each station.

If the entry is to he a single file station, the program requests the |following from the operator: !
ENTER RECORD NUMBER
I_TER FILE NUMBER

This request refers to the record and file numbers shown when SURVEY DATA

is selected and the survey data are printed during the initial program mode
selection.

C. Datum conversions

The progrmn next prompts the operator to enter the number of additional
datums in which the coordinates are to be shown on the data sheet. If only

Clarke/NAD coordinates are desired, the operator simply presses CONT. If
the coordinates are to be shown in other datums, the operator enters the
number of additional datums for which coordinates are to be shown. The

program then asks the operator to

SELECT ADDITIONAL DATUM

and displays the menu on which all the datums are listed. This display is
repeated the uumber of times correspOnding to the number of additional

datums previously specified by the operator,

D. Range, azimuth, and elevation to nearby points

The program operator is nOW asked to choose one of the two options in the

following CRT message:

0 = NO ANGLE AND RANGE DATA FOR NEARBY SURVEY POINTS

i .--INCLUDE ANGLE AND RANGE DATA FOR NEARBY SURVEY POINTS

When 0 is selected (or.CONT iS depressed wlthout..a numerical entry), the

data sheets are @rcpared without angle and range d_tta for nearby survey.

pointS. When l..is selected, the program diSplay_ the following request,
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SELECT RANGEAND ANGLEFORDIAT
i

!- 0 - ANGLES IN D.MS FORMAT- RANGEIN METERS
1 = ANOLES IN DE(] - RANGE IN I_fl_TER_.AND YARDSF

E. Program Output

A typical horizontal control data form for FPS-16 number 34 is Shown below:

i
I'

i

7-8 ,'



il •
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IIORIZONThL {X_I_:ROL DATA

i_ NM_ 017 STATION: _,_PS-16NO, 34
i

t, CL.,_IKE1866 (NORTII A_IERICAN (NAD-27)) COORDINATES ARE:

'_ GEODETIC LATITUDE = 34 _7 38.9531 (34.96082031) (0.610181424)

,, GEODETIC LONGITUDE = 117 5._ 38.1062 (117.91058506) (2.057927932)

ELEVATION ABOVE SEA LEVI_: _11.566 bIETER_ ( 263.3.613 FEET)
GEOD SEPARATION: -2,4.400 METERS ( -80.052 FEET)
SPIIEROID ELEVATION: 787.166 METERS ( 2582.560 FEET)

CAL ZONE 5 LAMBERT CRD: X = 61'7,767.24 METERS Y = 162,041.17 METERS
= 2.o026,791.36 FEET = 531,630.07 FEET

CAL ZONE 7 LAMBERT CRD: X = 1,314,721.03 METERS Y -_ 1,360,127.46 I_IETERS
--4,313,380.58 FEET _ 4,462,351.$2 FEET

CLARKE 1866 (NORTH AYIERICAN (NAB-27)) EFG COORD:
E = -2449851.59 M F = -4624898.18 l_! G = 3634568.77 M

FISHER 1960 (MERCURY) EFG COORD:
E = -2449848.59 M F = -4624787.18 M G = 3634793.77 M

FISHER 1960 (MERCURY) GEODETIC COORD:
GEODETIC LATITUDE = 34 57 39.4537 (34.96095937) (0.610183851)
GEODETIC LONGITUDE = 117 54 40.0495 (117.91112486) (2.057937354)

SPHEROID ELEVATION : 796.04 METERS

KAULA 1961 (KAULA 1961) EFG _ORD:
E = -2449874.59 M F _- -4624756.18 M G -- 3634764.77 M
EAULA 1961 (KAULA 1961) GEODETIC COORD:

GEODETIC LATITUDE = 34 57 38.9654 (34.96082371) (0.610181483)

GEODETIC LONGITUDE = 117 54 41.5269 (117.91153525) (2.057944516)

SPHEROID ELEVATION : 767.95 METERS

FPS-16 NO 34

RANGE, AZIMUTH, AND ELEVATION OF NEARBY SURVEY POINTS

DESCRIPTION OF POINT AZIMIYFH ELEVATION RANGE

BST 34 BRASS DISC 202 33 28.1 -2 50 22.2 675.11 METERS

BST 34 FEED HORN 202 41 17.6 0 50 39.8 674.36 METERS

MASTER NORI]I BASE 175 53 51.0 -I 21 12.1 1631.24 _TERS

MASTER SOUTII BASE 144 54 31.0 -1 15 41.4 5284.46 StinTERS

NASA 1 - 120 03 02.0 -2 43 35.4 2311.31 METERS

and so forth untll a11 points hay0 b0un shown {

The above sample shows the output format when 0 is entered for range and angle

format in step D above, lind 1 been entered, the format of the range and anale
data would have been:
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FPS_I6 NO 34
'i_'" I_NOE, _IMUII! AND ELEVATIONOF NEARBYSURVEYPOINTSI' 0

P_' DESCRIPTION OF POINT AZIMUTI[ H,EVATION RANflE(M) RANflE (YD)

,_ BST 34 BRASS DISC 202.5578 -2.8395. 675.11 738,31
k BST 34 FEED ItORN 202.6882 0.8444 _ 674.36 737.48 .....

i RASTER NORTIIBASE 175.8975 -1.3534 1631.24 1783.95

MASTERSOUT]tBASE 144.9086 -1.2615 5284.46 5779.14
NASA I 1.20.0506 -2.7265 2311.31 ...........2527.67

and.so forth until all pOints have been shown

Pzogram Validation

Since the data sheet subprogram uses subrOutines from other parts of the main
program, it suffices to validate individual results obtained on.the data•sheets
using the validation prOcedures for the individual subroutines. These ....:................
validation procedures are contained in the sections describing the individual
subroutines.
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RADAR CROSS SECTIONS.AND ANTENNA GAIN PATTERNS

t

i_ The radar cross section and antenna pattern coverage calculations are designed
i to use both ground-derived and air-derived data to compute target radar crOSS

sections or antenna coverage patterns. Generally, all necessary data can be
Obtained from a single flight if the aircraft maneuvers arc designed so that a
wide range of aspect angles are obtained.

i Radar Cross Section Calculations

To compute radar cross section ar -. function of the impinging• angle of the r-f
energy on the body axis triad, it is necessary to time correlate body axis
data, radar receiver i-f signal levels, and tracking measurements (RAg). It is
helpful if the radar system is capable of generating a time-tagged analog (duo-
binary) or digital recording of the five radar parameters (time, range,
azimuth, elovatlon, and received sisnal-to-noi9e ratio) needed for the

analysis. Body axis data, obtained from a stable platform on board the test
aircraft, is either transmitted to the ground in real-time or recorded on board

for post mission analysis.

This program is not concerned with the manner in which the data was Ob_:as.¢ed

(direct input from digital recordings or manual input from listings or _i

stripchart recordings). It assumes that data from the necessary sources has I
been entered onto a digital magnetic tape in a format which can be u._ed by the
data reduction program.

The following sequence of operations are carried out by the program on data
points recorded at 1 second intervals:

I. The aircraft's spatial position is converted from spherical R-A-E
coordinates into radar-centered, E-N-V Cartesian ._orm. This is

accomplished by calling subroutine Raexyz (fig. 8.1).

2. The E-N-V cartesian coordinates are rotated into alignment with the earth-
centered E-F-G Cartesian frame. This is ,¢compllshed by calling
subroutine Xyzefg (fig. 8.2).

3. The aircraft position is translated to the E-F-G frame. This is

accomplished by simple vector addition (fig. 8.3).

44. The AE-AF-AG vector from the aircraft to the radar is computed from
the known E-F-G coordinates oi' the zadar site and the computed E-F-G
coOrdinates of the aircraft (fig. 8.4).

5. The geodetic coordlnatcs of the aircraft arc computed from its E-F-G
coordinates. This i_ accomplished by the method of Purcell and Cowan
which iS fully covared in Chapter 5 ...........
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6. The AE-AF-AG coordinates of the radar position vector referenced to the
alrcraft centered, E-F-G-aligned triad are rotated to the aircraft-

centered E-N_V frame (fig. 8.4).

7. The E-N-V coordinates of the radar position vector arc rotated through
the body-axis Euler anglos to obtain the radar position with respect to
the body axes of the aircraft. This is accomplished by means of a
standard thr_ee-coordinate matrix rotation in which the direction

cosines are computed from the three Euler angles describing the pitch,
roll, and heading of the vehicle at that same moment in time.

8. Finally, the radar's Cartesian coordinates, referenced to the aircraft

body axes, are converted into spherical form (range-azimuth-elevation)
referenced to the same aircraft frame.

This provides the impinging angle of the r-f energy with respect to the aircraft
body axes at one second intervals throughout the test period. To Obtain a
value for radar cross section that corresponds tO this impinging angle, radar

range values for the same time-correlated, one-second intervals are combined I
with known radar parameters in the logarithmic form of the classical radar
equation,

[el = 4[R] + [B] + [NF] + [L] - [Pt] - 2[k] - 2[G] + [S/N]. (8.1)

Here _ is the radar cross section in decibels referenced to 1 square meter, R

is the range in decibels referenced to 1 nautical mile, B is the noise
bandwidth of the intermediate-frequency amplifier of the radar in decibels
referenced to 1 hertz, L is the transmitting and receiving line losses in

decibels, NF is the operating noise figure of the radar in decibels, Pt is the
peak transmitted power in decibels referenced to 1 watt, _. is the transmitted
wave length referenced to 1 cm, G is the antenna gain over isotropic gain in
decibels, and S/N is the ratio of receiver Signal power to noise power in t
decibels. In equation (8.1), decibel values are used for all terms in the I

square brackets. I

The various radar_dependent va_ameters used in equation (8.1) are determined !
J

from calibrated sphere tracks. Typical values recently computed for the DFRC !
AN/FPS-16 radar are:

1. B- 62 dBHz ]
1

d

2. NF- 11.2 dB i
I

3. L- 5.5 dB

4. k- 7.243 dBcm /--

5. G- 42.$ dB

Transmitted power is generally mee_ared from a calibrated power meter on the
radar console. One hundred percent power for AN/FPS-16 number 34 is 60 dBW.



In this program, the value of a computed from equation (8.1) is Stored

along with the three body axis angles for the impinsln_ signal at each data

point. A plotting subroutine allows the.value of o"to be plotted as a function
_/ of tlme or as a function Of b_dy azimuth anglo for a selected elevation window.

Antenna Gain Pattern

_ To comput_ antenna gain as a function Of impinginB an_le of the r_-f energy on

I' the body axis triad, it is again necessary to time correlate signal levels at

I the receiving system detector output with both body axis angles and precision
tr_cki._s data. The ground station may either be a transmitter (if the antenna

pattern of the on-board receive.r is to be measured) or a receiver (if the
antenna pattern of the on_board transmitter is to be measured). This type of

calculation provides general antenna pattern information fo_ line-of-slght type

i high-frequency signals (VIIF and higher) only.

During a receiving antenna test, a continuous si_al is transmitted from the iground station by means of a directional antenna slaved to a precision tracking

source. The signal level at the detector output• of the on-board receiver is

recorded along with body axis information and timing data. During a

transmitting antenna test, a continuous signal is transmitted from the flight
vehicle and received by a directional antenna slaved to a precision tracking

source. The received signal level is recorded at the r_ceiving site for

subsequent time base correlation with recorded tracking data and body axis
informa tion.

To perform the analysis, thc same sequence df operations is used as described

above for determining the angle of impingement (for ground-_to-air

transmission), or departure (for air-to-ground) transmission. In the case of

ground-to'-air checks, the gain of the on-board receiving antenna is computed

for each l-second data point by using s rearranged version of the standard
transmission formula,

[Gra] _ iS/N] - [Ptmw] - [Gg] + [PI] + [Lt] _. [Lr] -[Rs] (8.2)

where [Gra] is the gain of the airborne ante,nna (dB) for the instantaneous

aspect angle of the received r-f energy •, [Ptmw] is the transmitted power (dBm_V)0

[Gg] is the gain of the ground antenna (dB), [P1] is the path loss (dBm), [Lt]

and [Lr] are the transmitting and receiving line losses (dB),. and [Rs] is the

receiver sensitivity (dBm). In equation (8.2), decibel values must be used for

all terms in the square brackets.

To determine the gain pattern of an on-board transmitter antenna, the same

procedure is fOllowed except that the on-board transmitter is continuously
keyed while the aircraft performs planned maneuvers which will provide data for

all aspect angles of interest. In this case, the signal-to-noise level of the '_

received signal is measured at the ground •station and recorded along with the

timing data. The equation for determining the gain pattern of the on-board

transmitting antenna is

[Gta] -- iS/N] - [Ptmv,] - [Gg] + [Pl] + [Lt] + [Lr] - [Rs]. (8.3)
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Constant values used in equations (8.2) and (8.3) arc system dependent and
entered into the program _y the operator prior to commencing the data reduction
operations ............

In both equations (8.2) and (8.3) the path loss in dB is computed from

(8.4)
,_ [P1] "- 10 -_olo ),2....

4l?:_ where R is the vehicle range in meters and _ is the wave length of the ,
, transmitted signal in meters.

Variable Names

_r N_ e Description !Adb Additional losses in radar equation, decibels

Adldb Additional losses in antenna gain equation, decibels 1

Alt Target vehicle altitude above earth spheroid, meters

A(N,0). N array elements holding target range values

A(N,I) N array elements holding target azimuth values

A(N,2) N array elements holding target elevation values

Bwhz Noise bandwidth, hertz

B(N,O) N array elements holding signal-to-noise values

B(N,I). N array elements holding body azimuth values i

B(N,2) N array elements holding body elevation values

B(N,3) N array elements reserved for parameter storage

B(N,4) N array elements hOlding sigma or antenna gain values

B(0,0) Array location holding tracker latltude .....

B(0,1) Array location holding tracker 1Ongitade

B(0,2) Array locatiOn holdlng tracker altitude

B(0,3) Array location holding magnetic variatiOn ,'
i

B(0,4) Array lOcation holding,geOtd separation at tracker 1

C Geodetic course of target i



i__.

;!i

L Cosc Cosine of target course angle

t! Cosp Cos!nO Of target pitch angle

Cost Cosine of target roll anglo

" C(N,O) N array elements holding target magnetic heading

I" C(N,1) N array elements holding tarBet geodetic course .................

i' C(N,2) N array elements holding target pitch angle

i C(N,3) N array elements holding target roll angle ........

C(0,0) Array element holding starting time of runC(0,1) Array element holding ending time of run

Dualdb S/N loss due to dual mode, decibels

D(NoO) N array elements holding target latitude, degrees

D(N,I) N array elements holding target longitude, degrees

D(N,2) N array elements holding target sea-level altitude, meters

E E coordinate in E_'F-G frame of reference

F F coOrdinate in E-F-G frame of reference

Frah Radar frequency, megahertz

G G coordinate in E_F-G frame of reference

Gadb Gain of airborne antenna, decibels

Ggdb Gain of ground antenna, decibels

Gsep Geoid separation, me'_ers

Gtdb Gain of transmitting antenna, decibels

H Altitude of target above sea level, meters .............

lit Hours after start of run

Lamdbcm Wave length referenced to 1 centimeter, d@cibels

Lamdbm Wave length referenced to i meter, decibels

Lamdbmi Wave length reference to 1 nautical mile, decibels

s-S
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Lnm Wave length in current units

, Lain2 Square of wave length In current units

Lat Targetlatitude, degrees.

P Lon Target lOngitude, degrees

" Lrdb Receiver line losses, decibels

!i Ltdb Transmitter line losses, decibels• Ltrdb Combined transmitter and recoivex" llne losses, doclbels
!

MAT A2 _latrix used to store body axis direction cosines .....

• RAT E Generalized matrix used to store E-F-G coordinates

MAT Er Matrix used to store radar E-F-G coordinates

fiAT Ev Matrix used to store vehic1¢E-F-G coordinates

MAT X Generallzed matrix used to store X-Y-Z coordinates

biAT X1 Matrix used to store vehicle-to-radar coordinates

Magyar Input p_rameter for magnetic variation, degrees

Matflg Flag indicating forward or reverse matrix rotatiOn

_[hdg Target magnetic heading

Min Minutes after start of run

NbwdbhZ Noise bandwidth referenced to 1 hertz, decibels

Nfdb Radar noise figure, decibels

P Working value of target pitch angle, degx.ees

Pit Input target pitch parameter, degrees

Pldbm Path loss computed on basis of 1 meter, decibels

Ptdbmwa Airborne transmitter power referenced to 1 mflliwatt, decibels

Ptdbm_g Ground transmitter power referenced to 1 milliwatt, decibels _"

Pldbnm Path loss referenced to.1 nautical mile, decibels ( i

Ptdbw Transmitter power referenced to 1 watt, decibels

!
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R Working va!ue of target roll angle, degrees

Re1 Input value of target roll angle, de_reos

Rsdb RecOver sensitivity, decibels
i

Rsdba Airborne receiver sensitivity, decibels

,, Rsdbs Ground receiver sensitivity, decibels

Sec SecOnds after start._f, run

Sigma Radar cross section referenced to 1 square meter, decibels

Sine Sine of target geodetic course

Sinp Sine of target pitch angle

Sin_ Sine of target roll angle

Snr Signal to noise ratio, decibels .

U Latitude transfer variable, degrees

Vat Magnetic variation, degrees.

W Longitude transfer variable, degrees

X Transfer variable for radar-centered east coordinate

Y Transfer variable for radar-centered north coordinate

Z Transfer Variable for radar_centered vertical coordinate

Computationa i Alger ithms

Since a11 of the geodetic computations for this routine have been covered in

earlier chapters, they will not be repeated here. The algorithms used to

compute radar cross section and antenna gain are given below:

A. Radar cross section computation

Radar cross section is computed from the following algorithms:

P1dbnm-10*IAqT(A (N,O)/1852 ) _"

ee

Sigma=Ltr db+N fdb+Nbwdb hz+4*Pldbnm-2*Lamdbc m-2*G tdb-Ptdbw+Snr +Adb
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B. Antenna gain computation

ii Antenna 8aln is Computed from the following algorithms:

!: P1dbm_10*l_T( (4*PI*A(N, 0) )*'2/Lam2 )

Gadb=Sn_-Ptdbmw-Ggdb+Pldbm Lrdb-Rsdb
P\.

C. Angle Calcul_tion executive .routine

i'_ Tha executive routine used to compute the impinging angles of the r-f energyon the vehicle body is given in steps 1 to 22. In entering this
subroutine, values for pitch, roll, and course are provided as variables P,
R, and C, respectively. Values for range, azimuth, and elevation are

I provided as Rng, Az, and El respectively. In step 2, the range, azimuth,and elevation coordinates of,the target are converted tO Cartesian E-N-V

coordinates. In step 4, the E-N-V target coordinates are. rotated into E-F-G

alignment. Matflg is a flag which controls the direction of the rotation.
When it is set equal to 1, the rotation in subroutine Xyzefg is from E-N-V to

E-F-G. When Matflg is set equal to 2, subr.outine Xyzefg rotates E-F-G
coordinates into E-N-V alignment. In step 5, the target's radar-centered E-F-G

coordinates are added to the radar's earth-centered E-F-G coordlnates,to

yield the target position in the earth-centered E-F-G reference frame. In
step 9, subroutine Purcell is called to compute the target's latitu_e,
longitude, and elevation (Lat, Lon, and Alt) from its E-F-G coordinates. In
step 12 the spheroid altitude of the target is converted to altitude above

sea level by subtracting the geoid separation (Gsep) for the tracking site.
In step 14, the radar-tO-target E-F-G coordinates a:e reversed to yield the
target-to-radar E-F-G coordinates, and these .are then rotated into alignment
_;'ith the E-N-V frame of reference at the position of the target aircraft.

Subroutine Bodyangles is then called to compute the direction cosines
needed to rotate the vehicle-'to'radar E-F-G coordinates into alignment with

the vehicle body axes. This is accomplished by using the three body-axis
Euler angles P, R, and C to compute the six-dimensional rotation matrix A2.
The actual rotation is accomplished in step 17 which yields the Cartesian
coordinates of the radar site with respect to the vehicle body-axis triad.

In step 21, the radar's Cartesian coordinates are converted to spherical

form (body-axis azimuth, body-axis elevation, and range).

1. Compentry : l
2. GOSUB Raexyz

3. Mat flg=l !
4. GOSUB Xyz ef g
5. _tAT Ev=Er+E I
6. I_=Ev(O) 1
7. F=Ev(1) _,
8. G=Ev(2) , i

.... te i
9. 60SUB Parcell

i0. U=Lat ..................................

ii. W=Lon

12. II=A1 t-Gsep
13. Matflg=2
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14. _t_T E=Ee(-l)

15.. GOSUB Xyzefg
_ 16, C,OSUB Bodyang le s
:.... 17... MAT XI=A2*X ......
! 18. X-XI(O)
:_ 19. Y=X1 (1)
_,_

20. Z=Xl(2)

21. GOSUB XyzraoP_

22, RETURN

_" D. Radar cross section calculation

The Compute subroutine initializes the radar coordinates, magnetic
variation, and geoid separation which will be used for all of the

subsequent calculatlons. In steps 2 through 6 the radar-dependent values

are picked up from the holding elements in array B. In step 7, the sea--
level altitude of the radar is converted to spheroid altitude by addition

of the geold separation factor (6sep). In step 8, the program branches to
subroutine Model where the earth model parameters are assigned values. In

step 9, the value of the E-W radius of Curvature for the radar site is

computed, and, in steps 10 and 11, the earth, centered E-F-G coOrdinates of
the radar are computed and stored in MAT Er. If Opmode has a value of 4,
indicating COMPUTE A/C ANTENNA GAIN PATTERN (the fourth menu selection) ltad
been chosen, by the Operator, the program branches to the antenna gain
calcuation subroutine, Computegain. If Opmode has any other value, the

program continues with step 13 where a FOR-NEXT laop is initiated.. N, the
loop index, is set to range from 1 to the maximum number of data points in
the run. The total number of data points that must be processed- is equal

to the ending time of the run in seconds (stored in C(0,1)) minus the
starting time of the run in seconds (stored in C(0,0)) plus one. At step
14 the program branches to subroutine Init where the transfer variables for
radar-to-target range, azimuth, and elevation and the aircraft pitch, roll,
and course are set equal to the proper stored array values for that second
of the test. The program then branches to the angle cOmputation routine and
returns values for the body-referenced target-to-radar azimuth.and
elevation values and the target's geodetic coordinates for the same second.
These values are stored in the specified holding array elements. At step

15, the signal-tO-noise value for the same data point is assigned to Sndb.
If the value haPl:ens to be 0, indicating that no data was taken for the

point, the program se-ts Sigma equal _to zero and bypasses the cross-section
calculations. Otherwise-, path loss is computed in step 19, and radar cross

section is computed in step 20. The value of radar cross section for the

data point is stored in array element B(N,4). _i

The subroutine then returns to the start of the loop and i_tltializes for

the same computations on the next data point, r

I. Comput e : !
2. U=Rlat=B(0,0)

3. W=RIon=B(O, i)

4. Ralt=ll(0,2)

5. Vat=B(0,3)

__ . .: ' ". __. . _.:_, :.,-:-_._--_-.=*_.,.',,,. : ___±:i;_-....._ _.._...,, ;.'. , ,
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6. Osep=B(0,4)

7. II=Ralt+Gsep
_ 8. OOSUB _iod¢l

9..GOSUB Ncalc

i 10. GOSUII Efgcal¢
II. MAT Er=E

i 12. IF Opmode=4 _]tEN Computegain

13. FOR N=I to C(0,1)-C(0,.0)..+.i..
'_ 14. GOSUB Init

[_. 15. Sndb=B(N, 0)

'_ 16. IF Sndb<>O THEN 19

I 17. Sigma=0' 18. GOTO 21
19. Pldbnmffil0*LGT(A(N,0)/1852)

20. Sigma=Ltrdb+Nfdb+Nbwdbhz+4*Pldbnm-2*Lamdbcm-2*Gtdb-Ptdbw+Sndb+Adb

i 21. B(N, 4) =Sigma

i 22. NEXT NE. Antenna gain pattern calculation

Antenna gain calculations use the same radar and earth model

initializations as the radar crOSS section calculations (up through step 12

in the Compute subroutine). At step 12 in that subroutine, the program

branches to the Computegain subroutine where a similar FOR-NEXT loop is.

established. The same data point initialization is performed in step 3,

and the same angle values are returned. In step 4, the stored signal-to-

noise measurement for the data point is assigned to Sndb. If the value is

0, indicating that no data was taken for that point, the antenna gain is

set equal to zero and the program branches to step 10. If the signal-to-

noise ratio (decibels) was Other than O, the program branches to steps 8
and 9 where the path loss and antenna gain computations are made. The
computed antenna gain for the data point is stored in array location

B(N,4), and the program recycles to the beginning of the loop _here it

initializes for the next data point and cos'_inues the same computations.

1
Note that the zero decibel value for the signal-to-noise _atio is used to

detect a no-data conditiOn, even though a valid zero value could be

present. This causes no difficulty since the probability that the value is

precisely zero (the necessary Condition for the bypass branch) is

exceedingly small. Should a true zero value be present0 then one invalid
data point would be obtained.

1. Compute gain :!
2. FOR N=I TO C(0,1)-C(0,0)+I
3. GOSUB Init

4. Sndb=B(N,0) .-:
5. IF Sndb<>0 THEN 8

6. 6adb=0 i
7. GOTO i0

8, PIdbm=10*LGT( (4*PI*A(N, 0))**2/Lam2)
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_ 9. Gadb=Sndb_PtdbmwTGgdb+Pldbm-R sdb Lrdb
: 10 B(N,4) =Gadb

;, ii. NEXT N

F. Subroutine Ini__

_ Subroutine Init initializes the transfer variables with radar range,

'_ azimuth, and elevation and vehlele pitch, rot1, and yaw parameters for the

data point for which the.radar cross section or antenna gain val.uo is to be
• computed. At step 9 the subroutine branches to Compentry where the

impinging angles of the r-f energy on the body axes Of the vehicle and the

' vehicle's geodetic coordinates are Computed• These values are stored in

i the locations in 10 14, and, in 15,appropriate array steps through step

t_le subroutine returns to the calling progrsm.

1. Rns=A(N,0)
2. AzffiA(N.1)

3. F.IfA(N,2)
4. P=C(N, 2)

5. R=C(N, 3)

6. C=C(N., 1)

7. MhdgfC(N, 0)

8. H=Ralt+Gsep
9. GOSUB Compentry

10. B(N, 1)=Az

11. B(N,2)=E1
12. D(N, 0)=U

13. D(N, 1)-_W

14. D(N,2)=II
15. RETURN.

Program Operation

Both XSECT (radar cross section and antenna gain program) and RFPL are part of

a main program GEOD2. When_Good2 is entered, the following display appears on
the CRT.

PAKE PROGRAM SELECTION

0 = CROSS SECTION/ANTENNA GAIN CALCULATIONS

1 = SKYSC_E_

If the operator s01ects 0 and presses CONT, the program enters XSECT. As soon

as XSECT is entered, the following display appears:

t
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_ _ _.. _........... ij_ _" _ _-._ .._ .....

_IAKE MODE SELECTION

|,

'_ 0 = MANUAL CALCULATION OF BODY AXIS ANGLES ...............

"- I = ENTRY OF S/N, RAE, OR ATTIIUDE DATA
_: 2.= CALCULATION OF SIGMA FROM STORED DATA

i(, 3 = PRINT DATA OR CALCULATED PARA)_TERS

4 = COMPVI'E A/ C ANTENNA GAIN PA_TERN ._
,_ 5 = READ DATA FROM TAPE

6 = STORE DATA ON TAPE
l/ " 7 --PLOT SIGMA VALUES VS..BODY ANGLES

I 8 = PLOT ANTENNA GAIN VS. BODY ANGLES9 = PLOT SIGNAL TO NOISE VS. TIME

The following sections describe the prompt dis.plays and operator responses, for
each of the operating modes.

A. Manual calculatiOn of body axis angles: If this mode is selected, the
program prompts the following operator entries: .................................................

_MKE SELECTION

0 .= FPS-16 NUMBER 34
I -- MANUAL ENTRY

If FPS_16 NUMBER 34 is selected, the program picks up stored values for
latitude, longitude, ,,a-level elevation, geoid separation, and magnetic
variation. If _tANUAL ENTRY is selected, the operator is prompted to enter

all Of the same parameters as:

ENTER RADAR LATIIUDE IN DEGREES
ENTER RADAR LONG IaUDE IN DEGREES

ENTER SEA LEVEL ELEV OF RADAR IN _IETERS

ENTER GEOID SEPARATION AT RADAR IN METERS

i ENTER _[AGNETIC VARIATION AT RADAR IN DEGREES

This is followed by the following sequential prompts for target position
and at.t i.tud_ ..d._ ta :

)

ENTER TARGET RANGE IN YARDS
ENTER TARGET AZIMUTH IN DEGREES
ENTER TARGET ELEVATION IN. DEGREES
ENTER TARGET PITCH ANGLE (UP IS POS)
ENTER TARGET ROLL ANGLE (RT WING UP IS POS)
ENTER TARGET MAGNETIC BEADING .

After making the last entry, the program computes the target-to-radar body
angles and the target geodetic cOordinates. The results are displayed as '_--

follows : ,,

8-12
!

i



r.

TARflET TO RADAR RANGE (YDS) = 20031.2836

j TARGET TO RADAR AZIMUTI! _ 268.4356
TARGET TO RADAR FLEVATION = -20.1274

}

TARGET LATITUDE '_ 35.123573423_
i_ TARGET LONGITUDE _ 117.984537429.4

TARGET ALTITUDE (ET) _ 24015.2435

_ The program then returns to the Operator entry point to await additional
[" entri0s.

I_ B. Entry of SN, RAE, or attitude data: If the entry selection is made by the
operator, the following prompt message appears:

_[AKE SELECTION

0 = ENTER S/N RATIO VS TIME
1 = ENTER RAE VS TIME
2 = ENTER PITCIt VS TIME
3 = E_VrER ROLL VS TIME
4 " ENTER MAG ItDG VS TIME

If S/N data is to be entered, the program requests the starting and ending

IRIG times for which the data is to be entered. This is prompted by: i

ENTER STARTING IRIG TIME TO NEAREST SECOND AS HH:I_d:SS 1

ENTER ENDING IRIG TIME TO NEAREST SECOND AS HH:I_I:SS

The program also prompts the entry of the same radar parameters as
described above (AN/FPS-16 34 or manual entry). After the radar entries are
made, the program sequentially requests S/N data. The time is

automatically indexed by 1 second after each entry. If an entry is to be
made for a time other than that automatically displayed, the operator must

enter the time before the S/N entry. This is accomplished by the following
prompt messages:

AUTOTIbE IS 13:23:12 IF O_IER TI_ IS DESIRED ENTER AS HH:MM:SS

If the time for the entry is correct the Operator presses CONT. Otherwise

he enters the desired time and then presses CONT. The next prompt appears
as"

ENTER S/N VALUE FOR 13:23:12

This sequence continues until all S/N points have been entered.
g.

C. Entry of RAE data: If the RAE entry mode was selected, the program follows ,,
the same procedures as described for .step B above except that three entries

are made for each incremented or manually entered time. The prompt
messages are:
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ENTER RANGE (YDS) FOR 13:23 : 12
ENTER AZIMIVI_I (DEG) FOR 13-'23:12
El_rER ELEVATION (DEO) FOR 13:23 '12

(
D. Entry of pitch, roll, or yaw dat0: If pitch, tel)., or yaw data is to be

entered, the formats of the entryprompts are:

,_ ENTER PITCH -VALUE_ (NOISE UP IS POS) I_0R 13:23:12

l" Or

ENTER ROLL VALUE (RT WING UP 1S POS) FOR 13:23:12
I

or

i ENTER MAGNETIC HEADING VALUE FOR 13:23:12

If CALCULATION OF SIGMA FROM STORI_ DATA was selected at the main menu point,then the program uses the stored S/N and range values to compute radar cross

section (Sigma). For the calculations to be performed, the RAE, body axis
angles, and S/N data must be in the computer.

Prior to commencing the calculations, the program displays the default
parameters which will be used in the calculations. If any of these must be
changed, the operator may enter the ntm_ber corresponding to the parameter which
must be changed, and the program will prompt the operator to make the revised
entry. During these entries, the parameter display portion of the CRT is
locked so that the parameter values simply toggle as the operator selections
are made. The operator prompt messages needed to make the revised entries all
appear below the locked parameter display:

(1) SYSTEM PEAK POWER OUTPUT IN DBV/ = 60.00
(2) ANTENNA GAIN IN DB = 42.50
(3) V/AVE LENGTH IN DBCM = 7.24
(4) LINE LOSSES IN DB = 5.50
(5) NOISE FIGURE IN DB = 11.20
(6) NOISE BANDWIDTH IN DBHZ = 62.04
(7) ADDED LOSSES (EX. DUAL BAND) IN DB = 3.00
$$$tt$$$$$$OOOO$$O$$$$OOO$$$tt$$$$$$$$$$$$*$$$$$$$$

When all necessary revisions to the default parameters hav_ been made, pressing
CONT will take the program into the calculation mode. !

i

As each calculation is made, the results are displayed on the CRT. As soon as

the display stops scrolling, the calculations are complete and may be printed

out or plotted by making the appropriate menu selections. _-t.

If PRINT DATA OR CALCULATE_ PARAMETERS was selected at the main menu point, a

printout of any of the data files may be obtained. The foXlowlng prompt

message is displayed to the operator.
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MAKE SEI,ECrlON
I

0 = 'rIME, SNR, AND MEASURI_ RAE VALDES

rll 1 = TI_, TLAT, TLON, ANn TALT

( 2 = TI_, RNG, BODY AZ, BODY EL, AND SIGMA
3 = TI_, RNG, BODY AZ, BODY EL, AND ANT GAIN
4 = Tit@:, PITCII, ROLL, AND COURSE

|'t

. ttad COMPUTE Ale ANTENNA GAIN PAX'FERN been selected at the main menu point, the
program follows the same procedure as de.scribed for the calculation of sigma
values, except that the d_fault parameters needed for the antenna gain equation
at0 first displayed to the operator. The form Of this display is as follows.

' (I) TRANSMITTED POWER IN DBM_' = 39.99
(2) GROUND ANTENNA GAIN IN DB = 30.00
(3) ADDL LOSSES OR ADffUSTMENTS IN DB = 0.00
(4) TRANS_IIT LINE LOSS IN DB = 0.00
(5) RECEIVE LINE LOSS IN DB = 0.00
(6) RECEIVER SENSITIVITY IN DB = 103.00
(7) WAVE LF2_GI_i IN DBM = .87
************ *************************************

Again the operator may modify any of the displayed parameters by entering the
number of the parameter and pressing CONT. This will cause the program to

branch to an entry subroutine Lhat will request the revised values. Once the
parameter table shown above has the desired values, the operator presses CeNT
and the program enters the computational mode.

As each value is computed, it is displayed on the operator CRT. When the CRT
stops scrolling, the calculations are complete and the operator may select the
desired print or plot mode by pressing CONT, which returns the program to the
main menu point where the selections may be made.

The fifth and sixth main menu selections (READ DATA FROM TAPE and STORE DATA ON

TAPE) are self-explanatory.

Three plotting selections are provided: (1) PLOT SIGMA VALUES VS. BODY ANGLES,
(2) PLOT ANTENNA GAIN VS BODY ANGLES, and (3) PLOT SIGNAL"TO-NOISE VS. TIME.

All of these modes are automatic. In each case, the program establishes
maximum and minimum values for the plot.axes based on the maxinmm and minimum
values contained in the files. The proper scales, labels, and headings are
placed on the plot without additional operator entries being made.
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CIIAPTER 9

CIRCUIT MARGIN CALCULATIONS

This chapter.provides theory and Operating instructions for the circuit margin

,- calculations made in subprogram RFPL. PFPL is used to compUte circuit margin
P_ values for various standard transmitting and receiving systems used on the NASA

L_, Aerodynamic Test Range.

General Theory

In order to insure that the various r-f links used for tracking, telemetry, and

communications purposes have sufficient signal-to-noise ratios to provide
continuous communications throughout any specific mission, it is often

. desirable to compute the circuit margin values beforehand.

In RFPL, the circuit margin for the r-f link is determined from the relation

[Cm] = [Sn] - [Snr] (9.1)

where [Cm] is the circuit margin in decibels, [Sn] is the actual or predicted

signal-to-noise ratio at the detector of the receiver in decibels, and, [Snr]
is the required signal-to-noise ratio in decibels. Note that throughout the
derivations which follow, square brackets around parameters indicated that they
must be expressed as decibel quantities.

The default values of required received power for various r-f links used on the
ATR are given in table 9.1.

Table 9.1. REQUIRED S/N VAL_,S FOR ATR R-F LINKS

I
Modulation type Reqd. receive power 1

FM/FM, PAM/FM, PDM/FM 9- 12 dB

PCM/FM 15 dB

UItF voice 1O dB

On-board C-band beacon 12 dB

C-band radar 12 dB

[Cm] may be calculated from the well known r-f link equation

[Cm] = [Pt] - [Lt] + [Gt] - [P!] + [Gr] . [Lr] + [Rs]- [Snr]. (9.2) (

where [Pt] is the transmitted power output in decibels referenced to one

milliwatt, [Lt] is the transmitting line losses in decibels, [Gt] iS the gain

of the transmitting antenna in deelbels, [PI] is the path loss in dOCibels,



P_

b [Gr] is the receiver gain in decibels, [Lr] is the receiving line losses in
'. decibels, and [Rs] is the receiver sensitivity in decibels referenced to 1
I_' milliwatt.

Transmitted power output is computed from the relation

" (9.3)
v [Pt] -_10 log __-I (mW) "

Path loss is computed from tic relation ....

(9.4)
[PI] -_I0 log ),2

where R is the length of the r-f path, and )_ is the wavelength of the

transmitted signal. The units used fez R and k in equation (9.5) must be
consistent.

Receiver sensitivity in watts is found from the relation

Rs --k Te Bw (9.5)

where k is the Boltzmann constant (1.38/10-ZS joules per kelvin), Te is the

equivalent noise temperature (kelvin), end Bw is the receiver nOise bandwidth

(hertz). Receiver sensitivity in dBm is obtained from

k Te Bw (9.6)
P.s = -i0 log I000 "

Equivalent noise temperature is found from

Te = (Nfr - I)T 0 (9.7)
i

where Te is the equivalent noise temperature (kel%'in), Nfr is the receiver I

noise figure expressed as a ratio, and TO is the reference temperature 'j
(290 K). l

i

[Lt] and [Lr] are measured parameters. ]
!
J

For ATR telemetry systems, the system r-f link characteristics are as shown in
table 9.2



TABLE 9.2. AIR TELEMETRYSYSTEMCHARACTERISTICS ..... _"

t

'i .......

f Parameter Dual Band System Triplexed System

Noise figure (preamp on) 5 dB 3 dB

,, Noise figure (preamp off) 9 dB 10 dB

Noise bandwidth 501) kHz 500 Idtz _

' Receiving antenna gain 33 dB 35 dB '_ 'Receiving line losses 8 dB 8 dB

Typical frequency 1480.5 mHz 1480.5 mHz

Typical wavelength 0.2026 m 0.2026 m

A sample test calculation for the dual-band antenna is provided below. Tn this
case, Pt has been taken as $ watts, unity gain has been used for the
transmitting (airborne) antenna, 100 statute miles have been taken for the
distance, and 33 dB has been taken as the the receiving antenna gain. The
preamplifier is assumed to be used for the sample solution.

[Pt] = 10 log Xmit Pw_ (roW) ' '

= I0 log S x 103

= 36.9897 dBm

[PI] = I0 log _,2

= I0 log .(4nx 1,609 x 105 m)2

(0.2026 m)2 !
= 139.9825 dB J

Te ffi (Nfr - 1)T o t

= (3.16 - i) 290 K

= 627.06 K

[Rs] ffi-I0log (k Te Bw) ?."
tr

= -10 lo8 _.38 x 6.27.06 _.10 Is
= 113.6384 dB_

I

: ...... .... . _ . . ........ ,



I :

Therefore, for a PAM slsnal,

,_' [CM] _ [Pt] -[Lt] _ [P1] + [Gr] +_[Rs] .- [Lr] - [Snr]

I ,; 37 + 0 - 0 - 140.+ 33 + 114 - 8 - 12
).'

,., = 24 dB

t For the ttiplexed antenna ,vlth preamp11fier out and the same airborne

'_ conditions, different values for Gr and Rs would be used. The value for Gr,
found from table 9.2, is 35 dB, and Te is found from

Te = (Nfr- 1)T o

= (10 - 1) 290 k

= 2620 K

and [Rs] is found from

[Rs] = -_10 1os (1,38 x 261.Q__).10 Is

= 107.4451 dBm.

Therefore, for a PCM signal,

[Cm] = [Pt] + [Gt] - [Lt] _ [P1] + [Gr] - [Lr] + [Rs] - [Snr]

= 37 + 0 _ 0 - 140 + 35 + 107 - 8 - 15

ffi 16 dB

The system specifications for the AN/FPS-16 radar are shown in table 9.3, and
specifications for several common airborne beacon systems are shown in table I
9.4.

)
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_ TABLE 9.3. C-BAND LINK CIIARACTERISTICS

'_' Parameter Value

'_ Power output i. MW ........

il Receiver NF (paramps on) 4 dB :

Receiver NF (paramps off) 11 dB ._

Receiver bandwidth. 2 _ltz

Transmitting antenna gain 43 dB

Radar line losses (Nmit) 4 dE ....

Radar line losses (Rec) 2 dR

TABLE 9.4. TYPICAL AIRBORNE BEACON CKARACTERISTICS

Parameter 228 302 207 DPN-66

Transmitting power 5 W 300 W 40 _ 500 W

Receiver sans. 40 dBm 70 dBm 70 dBm 70 dBM

Receiving ant. gain 0 dB 0 dB 0 dB 0 dB

For the radar-to-target link

Xmit _owe.r
[Pt] -_I0 log 1 mW

= 10 lo8 1 • 10_

= 90 dBm

[Pl] = I0 log X_

= 10 log (4n x 1.609 x iOS)_(0.0530 m) = _"
tr

= 151.63

Therefore, with a 12 dB signal-to-noise requirement,

ii m [| |



p

_. [Cm] = [Pt] - [Lt] + [Gt] - [P1] + [Gr] - [Lr]_+ [Rs] - [Snr]

li. = 90 - 4 + 43 - 151 + 0 - 0 + 70 - 12

_' ffi 36 dB

'_ For the.beacon return, llnk the 8aln of the tran_mittlng and '_'eeeivin8antennas
_ is reversed, the receivin_ line losses of the radar must be considered, the

i_i ground receiver sensitivity must be computed, and the airborne transmitter

power is used.

[Pt] = I0 log 400 = 56 dBm

= (Nfr - = (2.51 - 1) 290 K 438.45 KTe I)T o m _

i [Rs] =-10 log (.i,38x.438.45, X_2__I0 x_

= 109.17 dBm

Therefore, having a 12 dB requirement for lockon,

[Cm] = [Pt] + [Gt] -[Lt] - [PI] + [Gr] - [Lr] + [Rs] - [Snr]

= 56 + 0 - 0 + 151 • 43 - 2 + 109 .- 12

= 43 dB

For uhf cOmmunications, typical values for the ground and airborne parameters

are given in table 9.5
]

TABLE 9.5. UtIF R-F LINK CHARACTERISTICS

!

Parameter Value 1

Power output (air) 5, I0, or 20 W .. 1
]

Airborne receiver sens. 100 dB

Airborne antenna gain 0 dB i t

Frequency 225 to 400 MHz

Ground transmitter power 50, 75, or 100 W i

Ground antenna, gain 5 dB
(AT-1097 GR) _:L.

Ground receiver sens. 103 dBm ,'

Transmit line loss I dB

Receive line loss 1 dB

9-6 !
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I
<' For the first uhf example, consider the case where a 20 watt •airborne

transmitter is installed.
I

: [Pt] _ i0 lo8 (20 x i0_). = 43 01 dBm

f_ Since the manufacturer's receiver sensitivity is already given, the downllnk
i
p, circuit margin can bc calculated as

p_ [Cm] = [Pt] + [0t] -[Lt] - [PI] +.[Gr] -[Lr] +[Rs] - [Snr]

I'._'_''_ ==I143dB+0 - 0 - 127 + 5 - I + 103 - I0

, Voice uplink margin .for the same I00 statute mile distance with 75 W of ...............

transmitted po_r would be computed from

[Pt] = 10 log (100 x 10s) = 48.75 dBm

and

[Cm] = [Pt] - [Lt] + [Gt]- [PI] + [Gr] - [Lr] + [Rs] - [Snr]

= ,;8 - i 4.5 - 127 + 0 - 0 + I00- 10

= 15 dB -

It should be noted that a different equation must be used for the C-band radar
link when in skin track mode. In this case the target's radar cross section
must be known (from theoretical estimates or from actual measurements).

!

The classical radar equation is !

Pt G2 _2 o
S/N = x 1.07 (9.8)

R4 Bw Nf L

where Pt is the transmitted power given in watts, o is the radar cross sectiOn

in m2, R is the target range i;"nautical miles, B is the equivalent noise
bandwidth in hertz, and Gain (G), noise factor (Nf), and combined line losses

(L) ar_. given as power ratios. Since the signal-to-noise calculations are only

approximate, it is generally the practice to neglect the 1.07 factor since it
is nearly unity.

Converting equation (9.9) to decibel form yields

[Cu] = [Pt] + 2[G] + 2[_] + [o] -4[R] - [Bw] - [Nf] - [L] - [Snr] (9.9)

Considering an AN/FPS-16 skin tracking situation with a 1 m2 target at 100

nautica! miles and parametric amplifiers off, the values for the various

parameters in equation (9.9) are ................................
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b [Pt] _-.60 dBw

I_, [G] = 43 dB

!! [_.] = 7.s dBom
i',, [_1 = 0

p_- [RI = 20 dBnm

_", [Bw] = 60 dBhz -..

i_ Substituting these values into equation (9.9) yields

[Cm] = 60 + 2(43) + 2(7.5).+ 0 - 4(20) - 60 - 11 -.4 - 12 = -6 dB,

which indicates that the system would be 6 dB below the required 12 dB lockon

signal strength.

Variable Names

Name Description

Beacon Flag indicating type of beacon

Bn Noise bandwidth, dBHz

Bn16 Noise bandwidth of AN/FPS-16 radar, dBIIz

Bw Bandwidth, KHz

Bwl6 Bandwidth of ANIFPS-16 radar, dBHz

C Speed of light (3 x 10 am/s)

Change Flag indicating certain default parameters must be revised

Cm Circuit margin, dB

Freq Frequency, MItz

Freqb Beacon response frequency, l_Iz

Freql6 ANIFPS-16 transmitting frequency, _z

Gr Gain Of receiving antenna, dB

Grl6 Receiving gain of AN/FPS-16 antenna, dB ,"

Gtl6 Transmitting gain of ANIFPS-16 antenna, dB

L Wave length, cm

9-8
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L16 Skin track wave, length, cm

Lain Wave length, dBm
/

_! Lr Receiving line losses, dB.

Lrl6, Receiving line losses of _q/FPS=16 radar, dB

_,, Lt Transmitting line. 10sses, dB..

lI_ Mode Flag indicating program mode selectionMode2 Flag indicating dual band.mode selection

Mode3 Flag in,licating triplex antenna mode selec*.ion

Mode5 Flag indicating uhf mode selection

Mode6 Flag indicating radar, mode sele.ction

Nf Noise figure, _B

Percent Percent power

P1 Path loss, dBnm

Pt Transm-:tted power, dBW or dBmW i

Pta Actual transmitting power, W or KW

Ptal6 AN/FPS-16 transmitting power, KW

R Range, dBnm

Rng Range, _n

Rs Receiver sensitivity, dBm

Sigma Radar crOss section, dBm=

Snr Required signal-to-noise ratio, dB

Snrl6 Required skin track signal-to-noise ratio, dB

Te Equivalent noise temperature, K

Tim Flag indicating type of telemetry modulation _."
tr
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i ComputatiOns 1 Algorithms

b The essential subroutines used in the RFPL subprogram ar_ as follows:
b_,

b_ A, Sclectl: Selcctl allows the operator to select circuit margin calculations

for r-f. links associated with the dual-band telem0try system, the triplexed
telemetry system, the Babcock uplink system, the voice communications (uhf)

system, and the C-band radar system. TwO additional selections are
P_

provided for calculating noise figure from equivalent noise temperature,

i' and for Calculating receiver sensitivity from the system noise factor. The

operatOr makes his selection by entering the number which corresponds to
the desired menu item. The number is stored as Mode.

B. Sysseleot: Subroutine Sysselect allows the operator to select a particular

i system or configuration associated with the major link selection. Theseselections are self-explanatory and are fully covered in the Program

Operation section of this Chapter.C, Dualspec: Subroutine Dualspec provides the default specifications for the
dual-band telemetry system.

D. Trispec: Subroutine Trispec provides the default specifications for the J

triplexed telemetry system. 1

E. Cspec: Subroutine Cspec provides the default specifications for the C-band
video downlink system.

F. Babspec: Subroutine Babspec provides the default specifications for the
BabcoCk uplink system. I

O. Comspec: Subroutine Comspec provides the default specifications for the

uhf communications system.

I. Dnspec: Subroutine Dnspec is called by Comspec if the uhf downlink
margin is to be computed. Dnspec provides default values for parameters

unique to the uplink cOnfiguration.

2. Upspe¢: Subroutine Upspec is called to Comspec if the uhf uplink

margin is to be computed, Upspec provides default _alues for
parameters unique tO the uplink configuration.

H. Beaconspec: Subroutine Beaconspec provides the default specifications for

the selected airbore beacon (228, 302, 207, or DPN-66).

I. Radspec: Subroutine Radspec provides defauit values for the AN/FPS-16 radar
Sy st em. '-"

e
¢

J. Manspec: SUbroutine b_anspec permits the operator to make manual entries Of

the r-f link parameter values. Self-explanat_ry CRT messages prompt the
operator entries.

9-I0



X. Compute: Subroutine Compute prompts the operator to outer the transmission

range in nautical miles for the current pass. It then computes path loss
and circuit margin using equations (9.4) and (9.2).

1,. Sklneomp: Subroutine Skincomp computes the r-f circuit margin for C-band
P radar skin track conditions. This roRuires the use of equation (9.9).

P_

_. Program Opera.rich

i' Upon entry in to the RFPL subroutine, the following CRT message is

displayed on the CRT.

i PLEASE SELECT THE DESIRED OPERATING _DDE

i I _ CIRCUIT MARGIN CALCULATIONS FOR MANUALENTRIES .

2 = CIRCUIT MARGIN CALCULATIONS FOR DUAL BAND SYSTEM
3 = CIRCUIT MARGIN CALCULATIONS FOR TRIPLEXED SYSTEM
4 = CIRCUIT MARGIN CALCULATIONS FOR BABCOCK (COMM ANT) UPLINK
5 = CIRCUIT MARGIN CALCULATIONS FOR:UIIF VOICE LINKS
6 _- CIRCUIT MARGIN CALCULATIONS FOR AN/FPS-16 RADAR
7 = NOISE FIGURE FROM EQ_U_VALENTNOISE TE_IPERA1URE
8 = RECEIVER SENSITIVITY FROM SYSTE_ NOISE FIGURE

The operator responds by entering the proper number and pressing CONT.
Immediately after pressing CONT, the output selection is displayed.

SELECT OUTPUT DEVICE

0 = CRT
i = THERMAL PRINTER
2 = LINE PRINTER

Again, the operator responds by entering the number Of the correct
selection and CONT. If calculations ar, _ to b_ made for the dual band

antenna, the next display will be:

_KE SELECTION

1 = DUAL BAND RECEPTION WITH PREAMPS ON
2 = DUAL BAND RECEPTION WII_t PREA_IPS OFF

Followed by:

PLEASE INDICATE TYPE OF PCM SI6NAL

1 = FM/FM, PAM/FM, PDM/FM
2 = PCI_I/FM

If, instead, calculations are to be made for the triplc_ed system, the
following message will be displayed:
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MAKE SELECTION
)

,_ I _-TRIPLEX UPLINK. WITH 25 WATTS OUTPUT
:_ 2 " TRIPLEX UPLINK WITII 50 _VAITS OUTPUT
I'

; 3 = TRIPLEX UPLINK WI2}I 100 WATTS OUTPUT
)" 4 = TRIPLEX L-BAND DOWNLINK WITH PREA_IPS ON

5 = TRIPLEX L-BAND DOWNLINK WIi]I PREA_[PS OFF
". 6 = TRIPLEX C-BAND TV DOWNLINK WITd PREAI_IPSON

t"', Followed by:

i "' PI,EASE INDICATE TYPE OF PCM SIGt_AL

1 = FM/FM, PAM/FM, PDM/FM

2 = PCM/FM

If the calculations are to be made for the uhf system, then the message
will appear as:

MAKE SELECTION

1 = UHF CO_,_!UPLINK (12-FOOT PARABOLIC DISH)

2 = UHF CO_[M DOWNLINK (12-FOOT PARABOLIC DISH)

3 _:UHF COM_! UPLINK (AT-1097-GR)

4 = UIIF.COMI%IDOWNLINK (AT-1097-GR)

[ -If the calculations are to be made for the AN/FPS-16 radar, then the message

will appear as:

Y,AKE SELECTION

1 "_C-BAND RADAR BEACON DOWNLINK (PARA_IPS ON)

2 = C-BAND RADAR BEACON DOWNLINK (PAIL_MPS OFF)

r 3 "_ C-BAND RADAR UPLINK (BEACON) J

4 = C-BAND RADAR SKIN TRACK (PAIL_MPS ON) ]
5 _ C-BAND RADAR SKIN TRACK (PARAMPS OFF)

After the appropriate operator selection has been made, if the calculations !

involve airborne beacon specifications, the next meSsage displayed is:

ENTER TYPE OF BEACON IN USE

1 = 228
2 = 302

3 = 207
4 = DPN-66

The program now branches to the appropriate Subroutines where default ,"
values for the parameters associated with the selected system configuration
are assigned to the appropriate working varlables. Immediately thereafter,
the default values are displayed on the GIT. If the operator accepts the

9-12 i
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,I, default values then ha._imply presses CONT. If-he wishes _o ehanae any one
o_ marc Of the default ,raisins,.. he pressa.s.l-and CONT.

t

A typical format of the .default .para_otCr,.display. is

I!.
. THE DEFAULT VALUES USeD FOR THE DUAL BAND Tt_E_4ETRY SYSTEM ARE :

t,i,

AIRBORNE TRANSMITTER POWER 5,0 W
,_ TRANSMITTING. FREO!TENCY 14 80.5

_,, TRANSMITTING. ANTENI_A GAIN 0.0 -DB,

_ TRANSMITTING LINE .LOSSES 0.0 DB

NOISE FIGURE (PREAMPS DFF) 9..0 DB
RECEIVING LINE LOSSES 7.9,.-DB_i

_ RECEIVING ANTENNA GAIN 33.0 DB •

MINIMUM ACCEPTABLE SIGNAL LEVEL 15.0 DB

COMPUTED SPECIFICATIONS ARE

TRANSMITTER POWER _7.0 DB_fWNOISE FACTOR AS RATIO 7.9

EQUIVALENT NOISE TF_IPERA1]JRE 2013.6 K
RECEIVER SENSITIVITY 108,6 DBM .........

IF SPECS OK PRESS CONTINUE, IF CHANGES ARE NEEDED PRESS i AND CeNT ....

Similar types of displays _ill appear for any system and configuration
selection made by the operator. After any Changes have been made to the
default parameters, the operator presses CONT and the program provides the
following prompt mes-sage:

ENTER TRANSMISSION RANGE IN NAUTICAL.MILES ........

The operator responds by keying in-the range fl )m the transmitting aircraft

to the ground. Upon pressing CONT the program enters the Compute mode and
displays the results as: ........

TRANS_LISSION RANGE 125.0 N.MI.

+Pt TRANSMITTED POWER 37.0 DB_
+Gt TRANSMITTING ANTENNA GAIN 0.0 DB

-Lt 2RANS_IITTING LINE LOSS 0.0 DB

-P1 PATH LOSS -143.1 DBM
+Gr RECEIVING ANTENNA GAIN 33.0 DB-
-Lr. RECEIVER LINE LOSSES_ -7.9 DB

+Rs RECEIVER SENSITIVITY 108,6 DB_

-Snr _HNIMUM ALLOWABLE SIGNAL...LEVI_ -15.0 DB _"

Cm CIRCUIT _IARfiIN 12.5 DB_IW

if, CONT is depressed at .this point, the program will return tO the range
entry pOint to permit a Second distance to be checked ...............
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Display formats for all of the_arious modes and configurations are similar
to that shown above for the dual-band system. In the event that a skin-

tt'ack radar link is being checked, then the display formats are slightly
different. A typical default parameter display for t__e skin track mode is:

r
_/ THESE ARE THE DEFAULT_ SPECIFICATIONS FOR C-BAND SKIN TRACK

PERCENT POWER SELECTED 100.O .PERCENT
P' IIL_qSMITTING POWER FOR ABOVE PERCENT 1000.0 KW
!_ TRANSMITTING LINE LOSS ....... 3.5 DB.

!, m CEmN LINELOSS 2.0 DB
ANTENNA GAIN 42,$ DB

TRANSMITTED WAVELENGTH 7,2 CM

P,ADARSYSTEMNOISEFIGUm 4.0 DB
RADAR RCTR NOISE BANDWIDTH 63.0 DBHZ
SINImJMACCEPTABLESISALLEV 20.0 DDW

I IF SPECS OK PRESS CONTINUE, IF CHANGES ARE NEEDED PRESS 1 AND, CONTb
If changes must be made to any of the system parameters, the operator
presses 1 and CONT, and the program sequentially steps through all of the
input selections. If no entry is made at any entry point, the program
retains the last.value (or the default value if no changes have been
entered for that parameter).

When the displayed system parameters are correct, pressin$ CONT will cause
the next message to appear on the_CRT.

F_fER THE TARGET RADAR CROSS SECTION

The operator.must make the appropriate entry (for examp.le, 15 dBm=) and
press CONT. The program then requests the target range.

ENTER TARGET RANGE IN NAUTICAL MILES ..

After these entries have been made, the program enters the compute mode and
displays the resultsto the operator. A typical display is:

TRANSMISSION RANGE 125.0 N.MI.

+Pt TRANSMITTED POWER 60.0 DBW

+26 2 X ANTENNA GAIN 85.0 DB

-4R 4 X TARGET RANGE -83,9 DBNH

-Ltr COb_INED LINE LOSSES -5.5 DB

+2Lain 2 X TRANSMITTER WAW_LENGTH 14.5 DBC_.!

-Nf OPERATING NOISE FIGURE .... 4.0 DB _..
-Bn RCVR NOISE BANDV/IDTH -63.0 DBHZ "

+Sig RADAR CROSS SECTION 15..0 DB_ ['1
_S_ MINII_KIM

ALLOWAB_ SIC_AL LEVEL -20.0 DB_W/ _ ]

Cm CIRCIJIT MARGIN -I. 9DB

l
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',_ SKYSCREEN PROGRA.M
I!.
PI

_ The skyscreon program Is used to compute Line-of-slght coverage pat£erns for.
specific antennas for which horizon-blockage data has-been entered. Data is

,_ acquired by means of theodolite measurements taken at the antenna site, or,.in

!,, the case.of tracking antennas with remote video installed, ..from elevation

i_ readings taken at the operatOrrs console. In taking data, the_horizon profile

is measured at each 1-degree increment of azimuth angle. When the necessary
mislevel corractions have been made to the measured_data, they are Catered into

r the skysereen program and stored on tape for future use in generating coverage

pattern.p!ots for ta _ ts at ........ .rge specified operating altitudes

General Theory

gu_fa co-To-Air Calculations

The skyscreen program uses the elevatlon blockage data for each of 360 azimuth
angles to compute the geometric line-of-sight range at which optical or r-f
energy will-intersect a given altitude shell when the antenna is depressed to
the terrain clearance point for that angle. The calculations are carried out
using the simple get,hetty shown in figure 10.1.

Groundsite-\

JigI "

Re / _---Sca level
Re

v

A

Figure 10.1. i
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.;/ In figure 10.1 tit iS the selected target height, Hs is the elevation of the0 . *

site above sea level, Re is the average radius of CurvatUre, and E is the.
elevation clearance angle If a ray were projected from the antenna site at ant,i *
elevation angle E, it would intersect witl_ the llt shell at the point C. The
slant range to the point of in te_seCtion is denoted by Sr, and the map distance

_ (surface arc) between the tracking site and the maximum range point is denoted
_ by S. The three opposite angles formed by the triangle legs St, Re • lit, and

Re + lis are A, B, and C, respectively.

h

; If the semimajor axis of the earth spheroid is denoted by a° the.eccentricity
_ by e, and the latitude of the 'tracking sl.te by _, then the north-south

(merldlonal) radius of curvature at the tr_acking site is given by ....

a(1 - _2)
R = _ _ " ...... '(10.1)

(I '.........

and the east-west radius of curvature at the tracking site is given by

! N _ (I - _asln_g)x/_" (10,2)

The average radius of curvature at the t_aekin_ site is found from

Re = (R x N) x/_. (I0.3)

Again consider the triangle ABC shown in figure 10.i. It is apparent that the

angle B and E are related by

B = E + _/2. (10.4)

The angle C is found from the law of sines as

(Re + Hs) sin B

C = azcsin _ Re + lit ' (I0._)

and the angle A is found from

A = _ - D- C. (10.6)

The only remaining unknown is the slant range from the tracking site to the
point of intersection of the elevation ray with the selected a!titude shell,

This is easily obtained by applying the law of sines, !

Sr =_ (Re + Ht) sin A. (10.7)
sin B

!

The surface arc distance (map distance) is found from the relation !

S = Re x A (10.8).
!

In the baseline skyscreen program, the elevation clearance angles for a _.
specific tracker are entered for each of 360-degrees of azimuth. The program ,,
then computes the map distance (S) and the Slant-range distance (St) for each
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azimuth angle. A plot is then-prepared for the selected tracker showin_ the
lino_of_sight coverage_pattern for any dosisnated target altitude.

If specified by the operator, tlle program wlll also call the gradient
refraction subprogram to provide refraction adjustments to the slant range and

_: map distance. This is accomplished by determining, the true elevation and range
values prior to computing the slant range and mapplng distance. The theory of

i, $radient refraction was presented in chapter 6.

Figure 10.2 shows a typical circular plot with both ge_c_e__r_l__and r_fraction- ......
_ corrected coverage patterns.

!
F'PS-16 RRDRR COVERRGE PRTTERN fOR TRRGET RT 4e_0 FT

' i
refraction correction

• °.

: ZSll NN

• .Without refraction correction-

,
• o

••••••oO_

I_igure 10.2
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Antenna azimuth angle, deg

Figure 10.3

Air To Air Calculations --

When an operation is conducted beyond line-of-sight communication range, it may
be deslrable to use an airborne repeater system teL serve as a telemetry and
communications link between the test vehicle and the ground cOntrol facilities.

This requires certain additional calculations that will allow the test planners _"
to compute a suitable station point for the airborne relay aircraft. Two
possible mission scenarios exist in whlch this. type of relay situation can be
useful. The first is for missions conducted at normal flight altitudes but at
extended rangeS, The second involves tracking a low flying test aircraft at
extended range, in which case terrain Obstacles are a problem on both ends of
the COmmuniCations net.

10-4 .................................................. ".........
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High-Flying Test Aircraft Calculatlons
k

' The geomc,try of the first scenario is provided in figure.,10.4. TO Op.timize the
:!_ signal-to-nolse ratios between the various transmitting and rccelvlng units
I:, (tracking s.lte, airborne relay and target vQhlcle) it was dcclded that the

_, relay aircraft should operate mldway, betwe_n-the tracking station and the
tracked vehicle, so tl_at Sl is approximately equal tO S2. Obviously, since both

i< the. relay aircraft and the. tracked vehicle arc at considerably higher altitudes
_." than that of the tracking, site, it is simply necessary to compute minimum

i'i altltnde at which th_ relay aircraft will have direct llne-of-alght

communications with the tracking site. This is accomplished as follo_vs.

First, the operator specifies the maximum anticipated distance between the test

i vehicle and the ground site. This distance (S) is entered by the operator.
The geometry used to compute the position and minimum altitude for the tracker-

I is the same as shown in figure 10.1. However, now the distance S is known and
the altltude, Hr (altitude of the relay aircraft), must be determined,

Relay aircraft

Test

F aircraft
Ground E

site

Figure 10.4

In this case the arc length Sl is one-half of the maximum anticipated operating
distance S of the test aircraft, and the angle A (in radians) is simply

A = .Re/S. (10 . 9 )_ l

For this calculation, the maximum obstruction an_le (E) for the operating 1
sector is found from the stored, obstruction data. The program then computes I_

from equation (10.4) and C from equation (10.6). Knowing angles A, B, and C as
well as Re and Hs, the minimum line-of-sight altitude (Hr) of the relay

aircraft can be obtained from _"

Br = sin B (Re + Hs) _ Re. (I0,.I0)
sln....C

The slant range from the ground Site _o the relay aircraft is again found from

equation (10.7)
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L0w-Flyin 8 Test Aircraft Calculations

When the test aircraft is operating at very low altitude, such as on terrain-
following radar. (TFR) missions, then it is necessary to consider both ends: of
the communications link. Here, one must first determine.the worst case
situation, such as.-a pass do_sn a valley where a mountain range may lie between
the test and relay aircraft.. In this c_se the position of the relay aircraft
is determined by noting the distance from the test aircraft's flight path to
the highes$ obstruction measured in the sector from the test aircraft in which
the transmissions to the relay aircraft nwill be made. Figure 10.5 shows the
geometry Of_the two transmission links. The lowest altitude of the test
aircraft is then entered, and the minimum line-of-sight elevation angle for the __
test aircraft to relay aircraft segmer_t is determined by the procedure set
forth for determining the blockage angle on the test aircraft link. Next,: the
operating sector from the ground station is entere_ and the highest stored
obstruction anBle for that sector is used as the obatruction angle for the site
to relay link. The operator then enters the maximum surface distance (S)
between the test aircraftts groun,_ path and the ground site.

_Relay aircraft

Highest sector Sr I Sr 2Obst ruct ion-.

Hr, -]Iighest sector

Figure 10.5

The blockage angle On .the test aircraft link is determined by noting the ii
geometry of figure I0.5, In this figure, D is the surface distance from the
flight path of the aircraft to the highest obstruction in the sector in which
the transmissions to the relay aircraft are to be made. The height of the _

obst._uction is Hm and the height of the low flying, target is Ht. It is first
necessary to compute the an_le B2. In figure 10.6, the known parameters ere
Re, _m, l_t, and D. The leg SrO can be. found fr_ the law of _oslnes as

(St0) s = (Re + Hm) z +-(Re + Ht) 2 - 2(Re + llm)(Re + l[_) cOS(D/Re), (10.11)
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Figure 10.6 __

Knowing St, i.t is possible to find the angle B2 by application of the law 0:" ....
sinesp .........

Returning to figure 10.5, it is apparent that the law of sines Can be a_plied

to oquate functions of the unknown terms C1 and C2.

Re + hr = (Re + Ha) sin BI (Re + I_t) sin B2
sin CI = sin CI " (].0.13) ..

Grouping the known parameters Hs, Ht, BI, and B2 into tezms K1 and K2 where

KI _ (Re + Hs) Sin BI, (10.14)

and

K2 _ (Re + lls) sin B2 (I0.15)

allows equation (10.13) to be simplified tO _,

K1 sin C1 : K2 sin C1. (i0.16) _'

It is also Obvious from figure I0._ that A1 + B1 * C1 = n, and
A2 + B2 + C2 = n. Combining these two relatiOns yields

10--I......................................... !
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AI + A2 + B1 + B2 + Cl �C2= 2n. (10.17)

Pocallln8 that

A1 = A =.SIRe, ....... (10.18)

end knowing B1 and B2, it is .now possible to find an expression for C2 as a
function of C1.

C2 _ [2,-S/Re_- (BI. �B2)]- CI. (10.19)

If K3 is substituted for the known quantity [2, - S/Re -(BI + B2)] in equatlon
(10.19), and equations (10.19) and (10.16) are combined, a simplified
expression may be written,

I,:1 s-in (K3 - C1)_= K2 sin C1. (10.20)

Applyln8 a standard double-angle formula to the left-hand side of equation

(10.20) and rearrangins 'terms yields

(K2/K1) sin CI = sin K3 cos C1 - cos K3 sin C1. (10.21)

If the known terms in equation (10.21) are replaoed with .

P1 = K21K1, P2 _ sin K3, and P3 --cos K3, (10.22)

equatiOn (10.21) may be rearranged to yleld the following expression in which
C1 is the only unknown:

P2 cos C1 -_ (PI + P3) sin CI, (10.23)

Or "

sin CI P2
= = tan CI. (10.24)

cos C1 P1 +P3

Knowing C1 and B1, A1 can be simply found from the relation

A1 = _ - B1 " Cl, (10.2S)

and ...ql can be. found from

$1 = Re/A1. (10426)

A flna).-calculation of hr is made using a rearranged form of equation (10.13),
k_

.... _ - Re. (io_2/)hr = (Re.�l_s) sin Cl -
I

Thus, we have. now determined the distance from the ground station to the point "
at which, the relay plane shOuld be Stationed ($1) and the m.lnimtm| altltude.(hr)

at which reception will be maintained with both the gTound station and the re_at....
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_ aircraft_ Obviously, the fact that the relay aircraft must maintain some type
! of orbit requires that additianal altitud0 be allowed for tile off-point

, conditions. In the skyscreon program, the suggested minimmn reception altitude
'_ for the relay aircraft is placed 5000 feet above the computed altitude.

',' ,qkysc recn Pr6grams

_i The following descriptions cover the algorithms oss©ntial _,o carry out

_ mathematical _outines presented in this chapter. .............................
Variable Names

Name Description .......................................................................

A Interior_angle of figure 10.1

A1 ..... Interior angle subtended by ground station to relay arc

As Semtmajor axis. of reference spheroid

Azl Azimuth at starting point of communicatlon_ sector

Az2 Azimuth at ending point of communications sector

B. ElevatiOn angle plus 90_ as sh0_yn in figure I0.I ._

B1 Angle in A1-B1-Cl_triangle in figure 10.5

C Angle in A_B-C triangle of figure 10.1

Cl Angle in A1-BI-(1 triangle in figure 10.5

Cony Conversion factor (radians to degrees)

D Map distance to obstruction On test aircraft Link.

Den Radical term in denominato,_ of_ equations (10.1) and (10.2)

El. Elevation angle of relay aircraft from g_ound statiOn ..
]

E2 Elevation angle of relay aircraft from test aircraft

E1L_ Maximum elevation angle for sector

g.

If(N) Elevation Array

'1Hm ...........Height of obstruction

t

Hr Mainimum line-of-sight altitude of relay aircraft i
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H8 Elevation of ground _tatton

_ Ht .............Altlt_do ..oLto_t- aIrcraft

' 11 Integer value of seQt0r starting azimuth

if',

12 Integer value of sector ending azimuth

_, _(r4_N) Array used to store elev_tlon angles, ground distances and

i,i slant ranges
Mapdlst Spherolddistance f_Om ground station to relay aircraft

, Maxdist Maximum coverage distance for all sector angles

Num Numerator of equation (10.1)

Nz ..... N £al_w _t ground station as given by equation (10.2)

PI n

Re Average earth radius at ground station

Rz R value at ground station as given by equation (10.1)

S Distance to maximum coverage point for any azimuth, angle

SI Distance from ground station to relay aircraft in _ ,^_.__ Iink

situation

Sinlat . Sine of ground station latitude

Sin21at Square of the sine of the ground station latitude

r Sina Sine of angle A in figure 1C.I

Sinb Sine of angle B in figure 10.1

i

I Cemputa tiona I AI got ithm

The essential algorithms used to compute the coverage ranges and relay aircraft
positions are as follows:

A. Subroutine Skyscrl: Subroutine Skyscrl computes the overall coverage
pattern around a specified tracker using stored terrain blockage data.
Upon entry £nt0 the subroutine, step 4 allows the operator t_, select the

desired grOund, station,._nd step 5 allows the output aelectio_ (CRT or
plotter) to be made. At step 6, the program branches to Ent_yl where th_
operator is prompted to enter the operating altitude (it) Of the target for

which the skyscreen plot is desired. The. fOrmat of tha Entry_ display is _

p_ovided in the Program Operation section.

!
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In steps 8 and 9, the sin 2 value of the ground station latitude is computed
" -" and stored for. use by the proBram. Steps 10 to 14 compute the two radii of?

L!, curvature and the av©rage radius of curvature at the ground station. In
i_I_ stop 15 the radian mode is set and the radish to degree conversion fa_tor
_ is computed in. Step 16, In step 18 a FOR-NEXT loop is established which

sequentially picks up the terrain blockage angle for each 360-degree of
i_ azimuth and performs calculations to determine the surface distance and
_ slant range to the point where the elevation ray intersects wi_h the Ht

il shell. The elevation angles slant range, and surface distance are s_ored

in a 360 by 2 dimensional array J. In step 30, the surface distance is
compared with the maximu_ surface distance for this loop, and the maximum
va_..ue is stored as _[axdist.

For correlation with the text, steps 8 to 14, implement equations (10.1) to
(10.3),_ step 20 implements equation (10.4), step 22 implements equation
(10.5), step 23 implements equation (10.6), step 25 implements equation
(10.7), and ssep 26 implements equation (10.8).

1. Skyscrl:l
2. Htf=0
3 .... PRINT PAGE

4. GOSUB .Radarsel
5. GOSUB Plotsel

6. GOSUB Entry1
7. DEG
8. Sinlat=SlN(Lat)
9-. Sin2 lat=Sinlat*Sinla t "

I0. Num=Aa* (1-E2)

II. Den-_SOR( I-E2.$ in21 a t )
12.. Rz=Num/Den**3
13. Nz=Aa/Den
14. Re_-SO_R(Rz*Nz)
15. RAD

16. Cony=360/(2*PI)
17. Maxdist=O
18. FOR N=I TO 360
19. El=H(N)/Conv
20. B=EI+PI/2
21. Sinb=SIN(B)

22. .C-=ASN((Re+Hs)*Sinb/(Be+Ht))
23. A=PI-B-C

24. Sinai-SIN(A)

25. St= (Re+}It) *S ins/$inb
26. Mapdlst=ReeA
27. J(N,0)fEl*Conv _
28. J(N, 1) =SJ:. _

29. J(N,2)fMapdist /

30. IF Mapdist)Maxdtst THEN MaxdistfMapdist
31. NEXT N
32. DEG
33. J(O,O)fblaxdist
34. PETU_

10-II



'_' B. Subroutine _kyser2: Subroutine Skyscr2 computes theposition and altitude
: of: a relay aircraft used for communication with a high-flying, extended
_ range target. After entry into the. subroutine., the program braneh0s t,)

Subroutine Radarsol In whleh the operalor is prompted to sel_et one of the

_' stored ground stations. This subroutine returns the-altitude of tlic site

i, (}Is),and its latitude (Let), The latltud0 value is used in steps 4 to I0. i
• to-compute the tw0 radii of curvature and tl_o average radius of Curvature i

at the ground station. At step 13, the program brancbg_ to Entry 2 whore
'_ the Operator is prompted to enter the mazimtml op.eratln_ range of the test

L_' aircraft (n mi.), and the starting and ending values of. the operating sector .......
as measured from the ground station (for examp].e, 10 degrees tO 40

degrees). In step 15, the maximum operating range Is-converted to meters.
The two azimuth values are stored as Azl and Az2, snd in steps 16 to i_,

, they are set to the nearest integer values and adjusted for measurement

across the 360/0 degree discontinuity. Note that the operatir.g se_tor is
always measured clockwise from Azl to Az2. In step 19, a FOR-NEXT loop is
established to find the maximum blockage angle in the selected operatin 8
sector. In step 24, the maxlmtm_ value of elevation is stored in radish

measure. The same procedure, as used in Skyscrl is implemented to compute
the anpole B1, and angle• A1 is computed by implementing equation (10.9) in .....
step 28. The angle C1 is found from equation (10.6) and, in step 300 the .
minimum reception altitude for the relay aircraft (Itr) is computed by
implementing equation (I0.I0):. Slant range is determined from equation

(10.7) as before. The computed minimum reception altitude (Hr) is used to

obtain a recommended relay altitude (Rr) by adding a constant 1500 meters.
Steps 31 and 33 Compute the same va.l.uesin feet, and steps 34 and 36 round.
the values to the nearest hundred.

The formats of the Entry2 and Print2 displays are given in .the:I_xog.ram

Operatioa section, t
I. Skyscr2 : I
2. DEO
3. _OSUB Rada rsel

4. Sinlat=SIN(Lat)

5. Sin21 at=Sial at*Sinla t

6. NumfAa* (I-E2)

7. Den=SO/1(I-E2*S in2lat)

8. Rz-_Num/Den**3

9. Nz=AaeDen

10. Re=SQR(Rz*Nz)

II. Cony=360/(2*PI)
12. Skyscr2a: [

13. Gt,TJB Ent ry2 ....................................
14. I_AD I

15. EIm=-PI/2 i

16. II=INT(Azl)

17. I2=INT(Az2)

iS. IF 12<II THEN I2=I2+360
19..-FOR N=I1 _D I2

20. II_ N>360 THEN N=N-360

21. EI_H(N1)
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J.... 22. IF El>Elm THEN Elm=El !

: 23. NEXTN
_i_ 24. EI_EIm/Con_
; 2_. BI=EI+PI/2

26. Sinb=SIN(B1)

27. SI-=S/2
_ 28. At=St/Re

ii 29.. CI=Pi-A1-B1

_0. Hr= (Sinb* (Ro+Hs) / SIN(C1) ).-Re..
31._ Hrf=Hr*3937/1200
32. Rr=IIr+1$00 ..........

_ 33. _Rrf=Rr*3937/1200

34. R_PROUND(Rr, 2)

35. Rrf_PROUND(Rrf,2)
36. SrI=(Ro+Hr)*SIN(M)/Sinb
37. GOSUB Prlnt2
38. PAUSE

39. _ SkyScr2a

C. Subroutine Skyscr3: Subroutine Skyscr3 is used to determine the optimum
positioning for a relay aircraft used to maintain communicatlons betwe.en a

ground station and a low-flylng test. aircraft. Operator input parameters
are the distance (S) to the test aircraft flight path point at which the.

blockage conditions are to be Checked, the altitude of the test aircraft at
that point (Ht), the altitude (Hm) of the highest obstruction in the test
aircraft's transmitting sector, the distance (D) of the obstruction from
the test air, raft flight path, and the azimuth angle Az from the ground

station tO the test aircraft point in.question. The stored latitude (Lat)
Of the ground statiOn is a._s..Oused as a program input parameter.

Steps 2 to 11 are identical with those previOusly described fo_ the Skyscr2
subroutine. At step 13 the program branches to subroutine Entry 3 to
accept the operator inputs. At step 15, the angle A0 (shown on figure 10.6
is computed, and equation (10.11) is implemented in step 16. In steps 17
to 19 the sector azimuth angles are initialized to integer values and
compensation is made if the sector crosses the 360/0 degree discontinuity.
In step 20, a FOR-NEXT loop finds the highest stored elevation blockage
angle for the ground station sector that lies 10 degrees on either side of
the test aircraft's azimuth angle, and that value is stored as El. In step

27, BI is computed using equatiOn (I0.4), and, in step 28, B2 is computed
using equation (10.12). The known terms KI,.K2, K3, PI, F2, and P3 (eqs.

(10.14) to (10.16)and (10.22)) are computed in steps 3_ to 35. In s.teps

36 to 38, CI is determined from equation (10.24), AI. is found from equatiOn

(10.25)0 and_Sl is found from equation (I0.26). In step 40, Hr is i

determined by implementation Of equation (10.27), and the. corresponding 1
value in feet iS computed in step 41. In steps 42 to 45, the recommended
relay altitude in meters and feet is. computed,. Note that the recommended ....... ,_"

altitude is simply the minimum reception altitude plus 1500 meterS. _
However, the reCOmmended altitudes (in both meters and feet) are rounded to
the nearest hundred, in step 46, Srl is determined by implementing

equation (i0.7)
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At step 47, Subroutine Print3 is called to printout the Values.fOr S1 (the
distance to the relay point), Szl (the slant range distance to the relay

aircraft), Hr (the minimum reception altitude), end Rr (the recommended

relay aircraft altitude},

The formats of the Entry3 and Prlnt3 displays are shown in the Prosram

Operation section..

:I. Skyscr3:t
2. DE{}
3. GOSUB Radarsel
4. Sinlat=SIN(Lat)

5. Sin2 lat=Sinlat*Sinla t

6. Num=Aa*(X-E2)

7. Den=SO_R(I-E2*.SIn2 Ist)

8. Rz=Num/Den]3..
9. Nz=Aa/Den

10. Re_-SO.R(Rz*Nz)
11. Conv_-360/(2*PI)

I2. Skyser3a:!
13. OOSUB Eat ry3
14. Elm=-PI/2
15. A0=D/Re
16. S _q)=SO_R((Re+Itm) *'2 + (Re+Ht) **2,-2* (Re+Hm) * (Re+H t) *COS(D/Re) )
17. Azl=INT(Az-10)
18. Az2=INT(Az_IO)
19. IF Az2<Azl THEN Az2_-Az2+360
20. FOR N'-Azl TO Az2
21. NI=N

22. IF NI>360 THEN NI=NI-360 1

23. EleH(N1) i
24. IF El>Elm THEN.Elm=El . I25. NEXT N

26.. EI-Elm/Conv

27. BI=EI+PI/2
28, _ B2-_ASN((Re+Hm) *SIN(A0)/St0)

29. IF Hm>Ht THEN B2=PI_B2
30. KI=(Re+Hs)*SIN(B1)

31. K2_(Re+IIs)*SIN(B2)

32. K3=2*PI-S/Re -(BI+B2)
33. PI=K2/K1

34. P2_SIN(K3)

35. P3_COS (K3)

36. CI=ATN(P2/(PI+P3)) ..............................
37. AI=PI-B1-C1

38. SI=Re/A1
39. SinblfSIN_ BI)

40. Hr= (Re �l*È�•�*Sinbl/Sin(C1)-Re ,_"

i 41. Hrf=Hr*393_/1200 ,"
i 42. Rr=Hr+l$00

f 43. Rrf=Rr*3937/120044 ....I_.r=PROU N._D(Rr,2 )
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45. Rrf=PROUND(Rrf,2)
46. Srl=(Re+Ht)*Sin(A1)/Sinbl
47. -flOSUB Print3,
48. PAUSE

, 49. 6OTO Skyscr3a

( 1

i', Program Operation i

I The skyscreen program performs several separate functions. These are:

1. Entry and storage of terrain blockage data for _eCific locations..

2. Generation of skyscreen profiles for specified target latitudes

a. Without refraction corrections

b. With refraction corrections

3. Computation of rel.ay aircraft location for long-range, high:altitude.
flights "

4. Computation of _elay.....a....ircraftlocation for long-range, .low_alt=itude
f 1 i ghts ........

Upon entry into tile program, .the following menu displays are provided for the
ope r a t or.

A. Operating mode selection•

SELECT OPERATING _ODE

0 = KEYBOARD ENTRY OF BLOCKAGE ANGLES FOR SPECIFIC SITE
1 = GET BLOCKAGE DATA FRO],I A TAPE FILE
2 = STORE BLOCKAGE DATA ON A TAPE' F1LE
3 = PLOT ELEVATION BLOCKAGE ANGLES .VS AZI_Ynt ANGLES
4 = PRINTOUT OF ,ELEVATION BLOCKAGE ANGLES VS AZIb_JTII ANGLES
5 = PLOT SKYSCREEN PATTERN WlTBOUT REFRACTION COITION
6 = PLOT,Sk'YSCREEN PATTERN Wll_l REFRACTION CORRECTION

7 = PLOT SKYSCREI_ PAI"IXRN WlX_I AND tVIatIOUT REFRACTION .CORRECTION
8 .= COMPUTE POSITION OF Rl_A¥ AIRCRAFT FOR ItI-ALiaUal)E _IlSSiON

9 = CO_tPUTE POSITION OF RI_A¥ AIRCRAFT FOR LO-ALTITUDE _tlSSION

B. Entr.y of blockage angle, from keyboard: In .this mode, the program
sequentially prompts the operator to enter the elevation blockage angle for
each azimuth anglo from I to 360 degrees. In th_ even the 0perator wishes
to enter or correct a btockage angle for any Specific azimuth, a negative
number is entered, and the program branches to a loop _hich allows the ,'._'
operator to enter a specific azimuth_angle. From that point the program

will seqt'tentially reques.t entries for consec_ti,e 1-degree azimuth ........................
increments.
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'_i" ENTER EL ANGLE FOR AZ OF i DEGREE (ENTRY OF 888 ALLOWS NE_ AZ ANflLE SI_L).
b

:i- ENTER EL ANGLE FOR AZ OF 2 DEGREES (ENTRY OF 888 ALLOWS NEW AZ ANGLE SI_)

i, :.

C. Entry of data stored in tape file This mode of program operation allows
F, the operator to enter the name of the data file which J_ read into the
_ elevation array, H(N). When the name has been entered, the operator

ill presses CONT and the program enters thedata from the selected tape file ........................

FA_R THE NA_ OF THE TAPE FILE TO BE READ IN TO ME_{ORY

D. Storage of data on tape file: This mode of program operation allOws the

I operator to store data entered from the keyboard into a specified tape
file. The program requests the name of the file, and when CONT is

I depressed, stores the data from the H(N) array onto the specified tape file.ENTER T_E NA_ OF THE TAPE FILE ON WHICH THE DATA IS TO BE STORH)

E. Plot of elevation obstruction angles as a function of azimuth angle (fig,.

10.3). The coordinates for the AN/FPS-16 radar, the communications

building, and the,main building are contained in the program.._ Others may :_

be added by minor additions to the.program subroutine Station. ii

SELECT GROUND.STATION

0 = AN/FPS-16 (34) i
i = COM_! BUILDING.

2 = MAIN BUILDING

F. Skysczeen plots: When any of the skyscreen plots have been selected, the

program reque._ts the followlng information,

SELECT GROUND STATION

0 = AN/FPS-16 (34)

1 = CO_! BUILDING ................

2 -_MAIN BUILDING

The Operator makes the appropriate selection and the program continues with
the following prompt message: 1

ENTER THE C,;_ERATINGALTITUDE FOR WIH_I 'I'tiEPLOT IS DESIRED _(FT)

The last operator selection is requested with the followin 8 prompt message:
f

MAKE PLOTTER..SELECTION .........

0 = CRT

I = §872A PLOTTER



, i

i. When the appropriate operator selection has b0on made, the program starts
the data plot on the soleetcd display or output device.

G. Compute position of relay aircraft for high-altitude support wissio_: The
, following operator inputs are prompted by visual messages.

,_ F_ER THE _AXI_fl_!GROUND STATION TO TEST AIRCRAFT RA,NGE (N MI)

L_ ENTER THE OPERATING.SECTOR AS.AZI, _Z2 (CLOCK_ISE FM AZI RX) AZ2)

i The operator makes the two entries sequentially as requested. The first
entry is made in nautical miles, and the second entries are made .in degrees

(for example 30,60 to represent the sector from 30 to 60 degrees azimuth as

i measured from the ground station). The program computes the minimum line_of-slght reception point for the relay aircraft based on the highest

P blockage angle in the operating sector. A 1500 meter margin is added to

the computed minimum reception altitude, and the results are displayed as: .

I. DISTANCE TO RELAY AIRCRAFT: 125 N MI

i SL RANGE TO RELAY AIRCRAFT: 231,711 METERS
MINIMUM RECEPTION ALTIIUDE: 6,971 _TERS (22,871 FT)

RECOM_-NDED RELAY ALTIXUDE : 8,5_0 _ETERS (27,80 0 FT)

H. Compute distance of relay aircraft far low-altitude support mission: Int
this case the o_erator is.prompted to make the following entries. Note

that this program returns values for specific ..points which may be. in
'. question. For example, if the route Of the test aircraft, were to pass down

a valley in which communications might be blocked by one or more mountains

along the test route,, thefollowing inputs would be made for each point in

question. The operator would respond to the various prompt messages shown

below by sequentially entering the distance (n mi) from the ground station
to the test aircraft, the azimuth angle (deg) from the ground station to

the test aircraft, the altitude of the test aircraft (it), elevation of the

mountain or other obstruction along the test routine (it), and distance of

the obstruction from the teat route as measured along the line from-the

test aircraft to the ground station (n mi) would be entered scquentially as

indicated by prompt messages shown below, f

FNTER THE DIST FROM THE GROUND STA TO TEST AIRCRAFT POSITION (N MI) 1
!

ENTER THE AZ ANGLE FROM THE GROUND STA_TO POINT IN OUESTION (DEG) I

ENTER THE ALTITUDE.OF TItE TEST AIRCRAFT _FT) t

ENTER THE ELEV OF THE OBSTRUCrlON ALONG TttE TEST ROUTE (FT) !

ENTER TBE.._tAPDISTANCE OF a_E OBSTRUCTION FRO_I 2]IE TEST ROUTE (N _,tl) :_

The program will compute the position anti-minimum reception altitude for. ]
the relay aircraft based.on the two line-of-sight links shown in figure

i0.5. It will display to the operator:

1
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DISTANCE TO RELAY AIRG1AFT: 175 N _lI
hi SL RANGETO RELAYAIRCRAFT: 323,526 _TERS.

MINIMUMRECEPTIONALTITUDE: 12,147 METERS (39,,854 FT)
i RECOMP_NDEDRELAYALTITUDE' 13,600 I_[ETERfi (44,8_)0 FT)

li The same p_ccedure should be repeate_ for any points along the test
aircraft route where blocka_e is anticipated. The recommended relay

,_ altitude for the worst case condition should be used.
i

/,
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_i_ APPENDIX
P_
.,',
I

A CLOSED-FOR_I OUARTIC SOLlYrION

P_

The followin8 is a procedure known as the Descar.tes technique for solvin$ a
fourth-degree polynomial equation. The steps siren below closely parallel
those presented in appendix 3 to reference 6. This procedure is implemented in
subroutine QuartiC, which is called byboth the Lagrange and GMD off-spherold .
coordinate determination programs.

Given an equation in the form

Ax _ + Bx s + Cx_ + Dx +E = 0, (A.I)
i

it is possible to divide byA and obtain a new equation, I

x 4 + B'x s + C'x _ + V'x + E' = 0. (A.2)

Equation (A.2) is then transformed into a reduced quaztic equation (an equation
in which the cubic term is eliminated) by making the substitutions

P _ 6h 2 + 3B_h + C' (A.3)I

Q = 4h 3 + 3B'h _ + 2C'h + D' (A.4)p •

R = h _ + B'h _ + Ceh _ + Dth + E t (A.$)P

I X e y + h, (A.6)

h - 4" (A.7)

Substituting equations.(A.3) to (A.7) in equation (A.2) yields the reduced
quart i c

y4 + pyz + Qy + R = 0. (A.8)

Now, by making the additional substitutions

f = 1 [3(p2. - 4R) - 4P_], (A. gl.
*l

1 t #

= _ [16P' - 18P(P 2 - 4R) - 270a], (A.10)S

Z = t...--.,s, (A.II)

2.

, s = - _ P, (A.12)
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a c_bic resolvent may be obtained as

! t s + 2Pt s +.(pa - 4R)t.- (I 2 " 0 (A.13)

!' or

i;: Zs + fZ + g _ O. (A.14)

_ In the Descartes technique, a branch indicator A is computed b_, the _elation

_ f* _ (A.15)
_ When h ) 0, .t_.he roots of the cubic, resolvent are found from
J

i Za = complez

Z s = complex

When A = 0 the roots of the Cubic resolvent are found from

Z_ = 2(-g/2) s/_ (h.17)

Za _ 2(g/2) s/z (h.18) !

Z+ = 2(g/2) +/: . (A.19)

A_d, when A _ O, the roots of the cubic resolvent are found from

Z 1 = Eocos(7/3) (h.20)

Z_ = Eoc.0s(7/3 + 2n/3) (A.21)

Zs = Eocos(7/3 + 4_/3) (A.22)

where t

Eo = 2(-f/31 1/a and 7 = arcos - 2(_f3/27)a/2 .

It is now possible to find.the critical root (R') of equation (A.14), which is i
the maximum real number of

t..

R* = max real root [Z t + s, Z_ + s, Z a + s], _ (A.24) ,,

h i_o_sitive real root will always be found.



I

! 0rico R' is obtaln0ds two now p_amQ_ers _ and _ can be found as

, g = _ [I) - Q/(R') '/2 ] (A.2_) ...........................

;L
I: gnd ........

= _ [P *-.R' + Q/(R') x/_ ]. (A.26)

l_:i It is now possible to factor equation (A.8) into two roots, ....

,, (y + y(R') _/_ + _)(y - y(R') _/_ + _) = O. (A.27)

t , The solution of the two quadratics given in equation (A.27) yields four roo_
valges for y. Thus the roots of equation (A.l) are ...........................

xa ffi Yl �hxz = Ys + h

(A.28)

x a = y_ + h .-

x4 = Y4 + h

In both the Hedgley and the G_fl) solutions, only the real root._ are r.,eaniu_'_l,
and in each case two roots will be real and two will be. complex. In t_..:-

Hedgley solution, where the quartic solution is carried out to obta_ _ value
of the Lagrange multiplier a, the proper• _oot is found to ba _he o..e for
which the value of target altitude is minim._zed, In the G_J so] _tion, the

correct root is the one having the same sign. as the value of r,

Variable Names

Name Description

• Alph .. The root used in the Lagrange multiplier solution

Delta A in equation (A.15)

E0 Eo in equation (A.23)

F2 f= -

F3 fs

Ffl f in equation (A.9)

Gain 7 in eqUatiOns (A.20) to (A.23)
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Ggl g in oquation (A.!O)

Ill ...........!_in c¢_ua_;ion(A.?_

I[2 h _

H3 h t

llflg 1 if real toots ire to be computed from Radiol

I2f18 I if zeal roots ate to be computed from Radio2

Nx

PI P in equation (A.3)

P2 P_

P3 ..... P,_

(_I Q in equation (A.4)

Q2 Q_

RadicI Generalized radical term used to soLve_equation (A.16) and
(A.27)

Radlc2 Generalized radical term used to solve equation (A.1fi) and
(A.27)

Rp R' term in equation (A.24)

$1 s term in equation (A.12)

Sign1 Sign of the value of the first radical in equation (A.16)

Sign2 Sigt, of the value of the second radical in equation (A.16)

Sqradl _ Square r o.ot of Radicl

Sqrad2 Square, root Of Radic.2
'4

Sqrdel Square root Of A

Sqrp Square root of R' I

Termb B' term in equation (A.2) _:

Termc CJ term in equation (A.2) J
Termd ....... D' term In equation (A,2)
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Termc E' tc_ in equation (A.2)
b

i X1 First root of equation (A.1)b,

i X2. S_ond root of equation (A.I)

X3 _ird root of _quation (A.1) .....
h

,' ]{4 Fourth root of equatlon.(A.l)
' I

ii Zzl ..... First root of equation (A.14) ....................

Zz2 Second root of equation (A.14)

Zz3 Third root of equation (A.14)

Algorithm

Subroutine Quartic is •.called in both the Hedgley and the G_Q) computations of
off-spheroid latitude and altitude. The subroutine receives precomputed values
of B', C*, D J, and E _ (Termb, Termc, Termd, and Terme) from the main program. ]
Equation (A.7) is implemented in step 2. Steps 3 and 4 form the power terms !
for equations (A.3) to (A.5), and steps 5 to 7 directly implement equations
(A.3) to-(A.$). Next, the power terms needed by eq_mtions (A.9). and (A.10) are
computed in steps 8 to I0, and the value of s in equation (A.12) is computed in
step ll. _,fl and GEl correspond to the f and g terms in equations (A.9) and
(A.10), and these equations are implemented in steps 12 and 13.

In steps 14 to 16, a value is Computed for. A by implementing equation (A.15).
Zzl, Zz2, and Zz3, the three roots of equation (A,14), are initialized to 0 in

step 18. When the value of A is positive_ the subroutine computes values for
Z starting at step 21 (Deltaplus). Steps 21 through 34 implement equation 1
(A.16), which applies when the value of A is positive. If the value of A

is 0, the program branches to Delta0 (step 35) and computes the values for Zzl,
Zz2, and Zz3 using equations (A.17) to (A.19). If the computed value for A
is negative, the program branches to Deltaminus (step 47) and computes the three

roots of equation (A.14) using the trigonometric solution shown in equations
(A.20) to (A.22). Regardless of which of tee three solutions for the three

roots of equation (A.14) is used, at least one positive real root will always
be found. The program branches from each of the three root-finding sections to
step $3 (Zplus) and determines the critical root (the maximum real root).

Using the critlC_l root (R_), the values of _ and _ are found by
implementatlon of equations (A.25) and (A.26). in steps 59 and 60. These values
are the right-hand members of the two factors of equation (A.8) shown in _"
equation (A.27). Since R w_, _, and _ are all known, it is possible to solve

each of the two bracketed terms in equation (A.27) by means of'th_ quadratic
equation, This yields the four y roots which can then b_ used in equati0n_
(A.28) to determine the four roots of equation (A.l). Step 63 forms the

radical term of the quadratic equation for the first bracketed term of equation
(A.27). If Radicl is positive, indicating that the two values Of y will be
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found by ,pplylns equation (A.28) (steps 68 and 69). YF Radlel is nogativee
indicating that the roots are imaginary, the program jumps to step 70 to find
the roots of the second bracketed term in equation (A.27). The same pro,adore

is aSaln followed and, if the radloal. (Radlc2) is positive, two real values of

x are computed. In the of_f.-sphar01dprosrams, two roots will al.ways be real ....

and two will always bo imaginary.- (If Radlel is positive, Radlo2 will be

negative, or the reverse will be true.) Sin0e only tha real roots are

meanlnsful for this solution, the imaginary roots are not Computed.. However,
if the imaginary roots should be n©edod for some r_ason, they could easily be
found by evaluating the ncsatlvo radleal.

I. Ouartlc: [
2. H1_-Termb/4
3. H2:HI*III
4. H3_HleH2

5. Pl=6*H2+3*Termb*Hl+Term¢
6. Ql_4SH3+3STermb*H2 *Hl+Termd

7 • Rl=H2*H2+Termb*HS+Termc*H2+Termd*Hl+Terme
8. P2ffiPl*Pl
9. P3=PlSP2

10. 02=QI*OI

11. S1=-(2"P1)/3

12. Ffl=(5* (P2-4*R1) -4"P2)/3

13. Gslf(16*P3-18*PI*(P2-4*R1)-27*02)/27
14. F2=Ffl*Ffl ........

15. F3=F2*Ffl "

16 .... Del ta_-F3/27 +Ggl*Ggl/4
17. Signl:Sign2=l
18. Zzl=Zz2_-Zz3=0

19. IF Delta=0 THEN Delta0
20. IF Delta<O THEN Deltaminus

21. Deltaplus:l
22. Sqrdel=SOR(Delta)
23. Radiel=-Ggl/2_Sqrdel

24. Radic2_-G81/2-Sqrdel
25. IF Radiol>-O THEN 28

26. Signl_-i
27. Radlcl=-Radicl

28. IF Radlc2>=O TIIEN 31
29. Sign2_-i
30. Radio2_-Radlc2

31. Zzl=Signl*Radlcl**(i/3) +Sign2*Radi¢2**(1/3)
32. Zz2=-.1E99

33. Zz3=-lE99

34. GOTO Zplus
35. _)elta0:.l

36. Radlcl=-Ggl/2

37. Radic2--O8112
38. IF Radic1>O THEN 41 _"

39. S18n1_-1 /
40. RadlCl=-Radlcl
41. IF Radlc2>0 THEN_44

42. Sign2=_-i
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,if

if:"

.: 43. Radie2_-'Radic2

44. Zzl-_2*f,lgnl*Radi el** (1/3)

4_, Zz2"Zz3 _Sign2*Rad io2** (1/3)
il. 46 GOTO ZplusIi
I 47. Doltamtnus :1
_,' 48 EO._2.*S(IR(-Ffl/3)

49. Game-ACS(Ggl/(2*SQR(-F3/27) ))
", 50._ ZzI_EO*COS(Gam/3)

_: 51.. Zz2=EO*COS (Gam/3+120) .............

" 52. Zz3 _E0*C0S (Gain/3 +24 0)

53. Zplus:l
_4, _ Rp=I_AX(Zzl „�˜�,Zz2+S1,Zz.3+Sl)

t 55. IF Rp<O TIIEN Rp=lE99
56. Sqrp=SQR(Rp)

i 57, Qdr_'Q1/Sqrp
58. Ilflg=I2flg=0

59. MI=(PI+Rp, Qdr)/2

60. NI=(PI+Rp+Qdr)/2
61. XI=X2_X3=X4=0

62. Ilflg=I2f18=0
63. Radt cl=Rp-4*M1
64. IF Radlo1>--0 THEN 67

65. Ilflg_l
66. GOTO 70

67. Sqradl=SOR(Radlcl)

68. Xl_-(-Sqrp+Sqradl)/2+H1
69. X2=(-Sqrp-Sqradl)/2+H1

70. Radic2=Rp-4*N1
71. IF Radlc2>-'_0THEN 74

72. I2flg_l
73. GOTO 77

74. Sqrad2=SQR(Radic2)

75. X3=(Sqrp+Sqrad2) ]2+Ill

76. X4= (Sqrp-Sqrad2)/2+HI

77. IF Ilflg=L THEN 81
78. .IF I2flg=l THEN 83
79. Alph=MAX (Xl oX2,X3 oX4)
80. RETURN
81, Alph=MAX(X3,X4)
82. RETURN

83.. Alph=_t%X(Xl,X2)
84 ......RETURN

There arc no operating instructions for this subrOutine since it never recqives

operator inputs. It is called from both the Lagrange and G[_) subprograms which

provide the necessary input parameters, and it returns the necessary roots to

the calling subprograms. _.
h.

t
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